Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change o...Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change of undercooling(DT)was systematically studied.It was found that the two alloys experienced the same transformation process.The refinement structures under different undercoolings were characterized by electron backscatter diffraction(EBSD).The experimental results show that the characteristics of the refinement structure of the two alloys with low undercooling are the same,whereas,the characteristics of the refinement structure with high undercooling are opposite.The transmission electron microscope(TEM)results of Cu60Ni38Co2 alloy show that the dislocation network density of low undercooled microstructure is lower than that of high undercooled microstructure.By combining EBSD and TEM,it can be confirmed that the dendrite remelting fracture is the reason for the refinement of the low undercooled structure,while the high undercooled structure is refined due to recrystallization.展开更多
Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change o...Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change of undercooling(ΔT)was systematically studied.It is found that the two alloys experience the same transformation process.The refinement structures under different undercoolings were characterized by electron backscatter diffraction(EBSD).The results show that the characteristics of the refinement structure of the two alloys with low undercooling are the same,but the characteristics of the refinement structure with high undercooling are opposite.The transmission electron microscopy(TEM)results of Cu60Ni38Co2 alloy show that the dislocation network density of low undercooled microstructure is lower than that of high undercooled microstructure.By combining EBSD and TEM,it could be confirmed that the dendrite remelting fracture is the reason for the refinement of the low undercooled structure,while the high undercooled structure is refined due to recrystallization.On this basis,in the processing of copper base alloys,there will be serious work hardening phenomenon and machining hard problem of consciousness problems caused by excessive cutting force.A twodimensional orthogonal turning finite element model was established using ABAQUS software to analyze the changes in cutting speed and tool trajectory in copper based alloy ultrasonic elliptical vibration turning.The results show that in copper based alloy ultrasonic elliptical vibration turning,cutting process parameters have a significant impact on cutting force.Choosing reasonable process parameters can effectively reduce cutting force and improve machining quality.展开更多
The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinemen...The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.展开更多
The compound CeNi 5Sn was studied by means of X ray powder diffraction technique and refined by Rietveld method. It has a hexagonal structure with space group P 6 3/ mmc (No.194), Z =4, the lattice constant...The compound CeNi 5Sn was studied by means of X ray powder diffraction technique and refined by Rietveld method. It has a hexagonal structure with space group P 6 3/ mmc (No.194), Z =4, the lattice constants a =0 48912(3) nm, c =1 973(2) nm and D x=8 974 g·cm -3 . The Rietveld structural refinement was performed, leading to R p=0 138 and R wp =0 185. The figure of merit F N for the XRD data is F 30 =82 1(0 0068, 54). The X ray powder diffraction data are presented.展开更多
The crystal structure of compound ErNiSb has been refined by the Rietveld wholepatternfitting method from X-ray powder diffraction data.The compound ErNiSb is cubic, space group F43m and the structure parameters and r...The crystal structure of compound ErNiSb has been refined by the Rietveld wholepatternfitting method from X-ray powder diffraction data.The compound ErNiSb is cubic, space group F43m and the structure parameters and reliability factors were refined to be a=6.268 3(1), V=246.29^(3), Z=4, D_(x)=9.377 g/cm^3, R_(B)=3.57%, R_(F)=3.64%, R_(p)=6.63%, R_(WP)=8.80%.展开更多
In this paper the solidification behavior of Sn-Sb peritectic alloy and the mechanism of grain refinement in solidification process under high-intensity ultrasonic field are investigated. Three different powers of hig...In this paper the solidification behavior of Sn-Sb peritectic alloy and the mechanism of grain refinement in solidification process under high-intensity ultrasonic field are investigated. Three different powers of high-intensity ultrasound are introduced into molten Sn-Sb peritectic alloy to study the refining effectiveness. The results show that the application of high-intensity ultrasound during solidification process of Sn-Sb peritectic alloy can refine α phase and β phase and eliminate gravity segregation of the alloy. As acoustic intensity is increased from 400 W to 800 W, not only the homogenous fine structure can be obtained, but also the cubic β phase crystals tend to be spherical. Microstructure of the sample treated by 600 W high-intensity ultrasound demonstrates the best refining effect.展开更多
QPA (Quantitative Phase Analysis) of carbonate rocks bearing calcite and dolomite using X-ray diffractometry (XRD) can be performed using the combined Rietveld Structure Refinement (RSR) and semiquantitative Reference...QPA (Quantitative Phase Analysis) of carbonate rocks bearing calcite and dolomite using X-ray diffractometry (XRD) can be performed using the combined Rietveld Structure Refinement (RSR) and semiquantitative Reference Intensity Ratio (RIR) methods, providing an estimation of crystalline phase in a mixture. Different ratios of five samples were prepared by mixing these crystal minerals with high sensitively. The scan speeds, adequate to determine mineral phases in rock samples, were used as 6 degrees per minute with 0.08 steps. The XRD analysis with commercial TOPAS 3.0 program, defined by a new generation of profile and structure analysis software, based on RSR provides Bragg reflection profiles and the dimension of the unit cell of a phase. The weight fractions of each phase were found by Le Bail and Pawley methods in RSR using a pseudo-Voigt peak shape model. The samples were also characterized by using X-ray fluorescence (XRF) and atomic absorption spectrometer (AAS). These analyses were conducted to compare these results with those obtained from the RSR. In addition to these, RSR of phases is very important to improve the goodness of fit (GOF). Therefore, the discussions of refinement of the carbonate mixing were made and a refinement procedure was given for these mixing in detail. Taking advantage of the RSR with the addition of an internal standard, the phase fraction of all the crystalline phases as well as the amorphous component, has been accurately determined. RSR technique offers a valid support for the characterization of marble in the light of industrial products.展开更多
Although stolzite was discovered in Yaogangxian, Hunan Province, China, in 1948, no formal report about this mineral has been published. Recently its crystal structure has been refined by means of the Rietveld method....Although stolzite was discovered in Yaogangxian, Hunan Province, China, in 1948, no formal report about this mineral has been published. Recently its crystal structure has been refined by means of the Rietveld method. The cell dimensions of the mineral are: a=b= 0.544503(3) nm, c= 1.20495(1)nm and α=β=γ=90° . The X, Y and Z coordinates of the atom O refined by the authors are 0.2637, 0.1137 and 0.0706, respectively. The length of the W-O bond is 0.17826 nm and the angle of the O-W-O bound are 123° and 103° ,respectively.展开更多
The application of electric current pulse(ECP) to a solidification process refers to the immersion of electrodes into the liquid metal and the employment of thermal insulators on the upper surface of metal.In order ...The application of electric current pulse(ECP) to a solidification process refers to the immersion of electrodes into the liquid metal and the employment of thermal insulators on the upper surface of metal.In order to ascertain the effects of these two factors on the structure refinement by the ECP technique,three groups of experiments were performed with different types of electrodes or various thermal insulators.By the comparison between solidification structures under different conditions,it is followed that the electrode and the thermal insulator have an obvious influence on the grain refinement under an applied ECP,and further analysis demonstrates that the thermal conditions of the liquid surface play a vital role in the modification of solidification structure.Also,the results support the viewpoint that most of the equiaxed grains originate from the liquid surface subjected to an ECP.展开更多
The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental resul...The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.展开更多
The phase of pyrochlore Gd_2Zr_2O_7 used for immobilization of Pu (Ⅳ) was investigated, tetravalent cerium was used as the simulacrum for plutonium with tetravalence, and the compounds in the system Gd_2Zr_2-_xCe_x...The phase of pyrochlore Gd_2Zr_2O_7 used for immobilization of Pu (Ⅳ) was investigated, tetravalent cerium was used as the simulacrum for plutonium with tetravalence, and the compounds in the system Gd_2Zr_2-_xCe_xO_7 (0.0≤x≤2.0) were synthesized via a high temperature solid reaction method with Gd_2O_3 and ZrO_2 powders being used as the starting materials. Based on the collected XRD data of the gained samples, the phase and microstructural change of compounds were calculated by means of rietveld structural refinement method. The experimental results indicated that the phases of compounds were changed from pyrochlore to fluorite-type phase with the increasing x. The linear relation between a and x was discovered in the range of fluorite-type phase, which accorded with a = 0.52748 + 0.00825 x (0.2≤x≤2.0), while V= 0.14668 + 0.00711 x (0.2≤x≤2.0) was also achieved.展开更多
This research reports the processing of magnesium matrix composites reinforced with silicon carbide(SiC)and aluminium oxide(Al_(2)O_(3))using powder metallurgy technique through high energy milling.Samples of Mg-SiC a...This research reports the processing of magnesium matrix composites reinforced with silicon carbide(SiC)and aluminium oxide(Al_(2)O_(3))using powder metallurgy technique through high energy milling.Samples of Mg-SiC and Mg-Al_(2)O_(3)composites subjected to high energy ball milling for different vol%of secondary particles 20,30 and 40%of SiC and Al_(2)O_(3)are studied by X-Ray diffraction technique.The rietveld method as implemented in the Fullprof program is applied in order to determine the quantities of the resulting crystalline phases and amorphous phases at each stage of the mechanical treatment.Microstructural examination is carried out using Scanning Electron Microscope(SEM).In addition,crystal structural analysis using appropriate size and strain models is performed in order to handle the distinctive anistrophy that is observed in convinced crystallographic directions for the magnesium composite.The results are furnished in terms of crystalline domains size enlargement of the magnesium composites phases upon prolonged milling duration and discussed in the light of up to date views and theories on crystal growth of nanocrystaline materials.The hardness of the composite samples is calculated by Vickers’s Hardness tester.Further,dry sling wear test and corrosion test are performed for the fabricated composites.Composite with 30%secondary particles incorporated magnesium composites exhibits better wear and corrosion resistance than the other composites.展开更多
Numerical solver using a uniform grid is popular due to its simplicity and low computational cost, but would be unfeasible in the presence of tiny structures in large-scale media. It is necessary to use a nonuniform g...Numerical solver using a uniform grid is popular due to its simplicity and low computational cost, but would be unfeasible in the presence of tiny structures in large-scale media. It is necessary to use a nonuniform grid, where upsampling the wavefield from the coarse grid to the fine grid is essential for reducing artifacts. In this paper, we suggest a local refinement scheme using the Fourier interpolation, which is superior to traditional interpolation methods since it is theoretically exact if the input wavefield is band limited.Traditional interpolation methods would fail at high upsampling ratios(say 50); in contrast, our scheme still works well in the same situations, and the upsampling ratio can be any positive integer. A high upsampling ratio allows us to greatly reduce the computational burden and memory demand in the presence of tiny structures and large-scale models, especially for 3D cases.展开更多
Tin (Sn) metal foil is a promising anode for next-generation high-energy–density lithium-ion batteries (LIBs) due to its high capacity and easy processibility. However, the pristine Sn foil anode suffers nonuniform a...Tin (Sn) metal foil is a promising anode for next-generation high-energy–density lithium-ion batteries (LIBs) due to its high capacity and easy processibility. However, the pristine Sn foil anode suffers nonuniform alloying/dealloying reaction with lithium (Li) and huge volume variation, leading to electrode pulverization and inferior electrochemical performance. Herein, we proposed that reduced grain size and elaborate porosity design of Sn foil can circumvent the nonuniform alloy reaction and buffer the volume change during the lithiation/delithiation cycling. Experimentally, we designed a three-dimensional interconnected porous Sn (3DIP-Sn) foil by a facile chemical alloying/dealloying approach, which showed improved electrochemical performance. The enhanced structure stability of the as-fabricated 3DIP-Sn foil was verified by chemo-mechanical simulations and experimental investigation. As expected, the 3DIP-Sn foil anode revealed a long cycle lifespan of 4400 h at 0.5 mA cm^(−2) and 1 mAh cm^(−2) in Sn||Li half cells. A 3DIP-Sn||LiFePO_(4) full cell with LiFePO_(4) loading of 7.1 mg cm^(−2) exhibited stable cycling for 500 cycles with 80% capacity retention at 70 mA g^(−1). Pairing with high-loading commercial LiNi0.6Co0.2Mn0.2O_(2) (NCM622, 18.4 mg cm^(−2)) cathode, a 3DIP-Sn||NCM622 full cell delivered a high reversible capacity of 3.2 mAh cm^(−2). These results demonstrated the important role of regulating the uniform alloying/dealloying reaction and circumventing the localized strain/stress in improving the electrochemical performance of Sn foil anodes for advanced LIBs.展开更多
オ-ray powder diffraction data and crystal structure of RE compound NdCoGe3 were studied by using X-ray powder diffraction and refined by the Rietveld profile fitting method. The compound has the tetragonal BaNiSn3typ...オ-ray powder diffraction data and crystal structure of RE compound NdCoGe3 were studied by using X-ray powder diffraction and refined by the Rietveld profile fitting method. The compound has the tetragonal BaNiSn3type structure, space group I4mm (No.107) a=0.42961(2) nm, c=098147(4) nm, V=0.018114 nm3, Z=2 and Dx=7.717 g·cm-3. The figure of merit FN for the powder data is F30=623 (0.0107, 45). Structure refinement was performed with 110 reflections and led to Rp=11.78% and Rwp=16.56%.展开更多
The X-ray diffraction analyses show that the existence of a continuous solid solution of Al_xSb_ 3-xY_5 (0≤x≤216). Al_xSb_ 3-xY_5 crystallizes in the hexagonal system with the space group P6_3/mcm (193) and Mn_5Si_3...The X-ray diffraction analyses show that the existence of a continuous solid solution of Al_xSb_ 3-xY_5 (0≤x≤216). Al_xSb_ 3-xY_5 crystallizes in the hexagonal system with the space group P6_3/mcm (193) and Mn_5Si_3 structure type. The cell parameters for Al_2SbY_5 compound at 25 ℃ are a=0.88086 (2) nm, c=0.64662 (2) nm.展开更多
In this paper,the principle of Pulsed Magnetic Field(PMF) force was analyzed through mathematical analyses.By theoretical analysis and calculation,the results show that the great electromagnetic force is made in the m...In this paper,the principle of Pulsed Magnetic Field(PMF) force was analyzed through mathematical analyses.By theoretical analysis and calculation,the results show that the great electromagnetic force is made in the melt under pulsed magnetic field,as well as changing its direction in different places of melt at the same time.It enforces the crystallizing nucleus and brittle crystallite to fragment in the solidification processing.From the point of view,one of the main factors of grain refinement is that the fragmentations occur under a pulsed magnetic field by preliminary judgement. The feasibility of application in the metallurgical industry under PMF was discussed through comparing the results of grain refinement under EMS.According to the theoretic calculation,the power consumption under EMS is 5 -8 times the amount under PMF,when both of magnetic flux density B are 0.07T.That is to say,the better effect on grain refining can be obtained under PMF,compared with EMS,even in the lower power consumption.The solidification experiments of Sn-20%Pb alloy are conducted under the same experimental conditions that the magnetic intensity is 0.07T in the center of the crucible,it also shows that PMF has a better effect on grain refining than EMS. Combined with the continuous casting process,the influence of pulsed parameters and the metallurgical effects with applying PMF at different solidification stages was investigated.There are different grain refining effects under PMF in different solidification stages,and there are different grain refining effects under PMF in different PMF parameters.For the Sn-20%Pb alloy or silicon steel,it is more effective during the initial stage,in which the pulse frequency is 5Hz.For the Sn-20%Pb alloy,the average grain size ofβphase is the smallest,when applying the PMF during the temperature of melt decreasing from 201℃to 184℃.Further investigation of the specified technique parameters for industrial applications are required.展开更多
One of the critical issues in numerical simulation of fluid-structure interaction problems is inaccuracy of the solutions,especially for flows past a stationary thin elastic structure where large deformations occur.Hi...One of the critical issues in numerical simulation of fluid-structure interaction problems is inaccuracy of the solutions,especially for flows past a stationary thin elastic structure where large deformations occur.High resolution is required to capture the flow characteristics near the fluid-structure interface to enhance accuracy of the solutions within proximity of the thin deformable body.Hence,in this work,an algorithm is developed to simulate fluid-structure interactions of moving deformable structures with very thin thicknesses.In this algorithm,adaptive mesh refinement(AMR)is integrated with immersed boundary finite element method(IBFEM)with two-stage pressure-velocity corrections.Despite successive interpolation of the flow field by IBM,the governing equations were solved using a fixed structured mesh,which significantly reduces the computational time associated with mesh reconstruction.The cut-cell IBM is used to predict the body forces while FEM is used to predict deformation of the thin elastic structure in order to integrate the motions of the fluid and solid at the interface.AMR is used to discretize the governing equations and obtain solutions that efficiently capture the thin boundary layer at the fluid-solid interface.The AMR-IBFEM algorithm is first verified by comparing the drag coefficient,lift coefficient,and Strouhal number for a benchmark case(laminar flow past a circular cylinder at Re=100)and the results showed good agreement with those of other researchers.The algorithm is then used to simulate 2-D laminar flows past stationary and moving thin structures positioned perpendicular to the freestream direction.The results also showed good agreement with those obtained from the arbitrary Lagrangian-Eulerian(ALE)algorithm for elastic thin boundaries.It is concluded that the AMR-IBFEM algorithm is capable of predicting the characteristics of laminar flow past an elastic structure with acceptable accuracy(error of-0.02%)with only-1%of the computational time for simulations with full mesh refinement.展开更多
基金Funded by the Basic Research Projects in Shanxi Province(No.202103021224183)。
文摘Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change of undercooling(DT)was systematically studied.It was found that the two alloys experienced the same transformation process.The refinement structures under different undercoolings were characterized by electron backscatter diffraction(EBSD).The experimental results show that the characteristics of the refinement structure of the two alloys with low undercooling are the same,whereas,the characteristics of the refinement structure with high undercooling are opposite.The transmission electron microscope(TEM)results of Cu60Ni38Co2 alloy show that the dislocation network density of low undercooled microstructure is lower than that of high undercooled microstructure.By combining EBSD and TEM,it can be confirmed that the dendrite remelting fracture is the reason for the refinement of the low undercooled structure,while the high undercooled structure is refined due to recrystallization.
基金Funded by the Basic Research Projects in Shanxi Province(202103021224183)。
文摘Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change of undercooling(ΔT)was systematically studied.It is found that the two alloys experience the same transformation process.The refinement structures under different undercoolings were characterized by electron backscatter diffraction(EBSD).The results show that the characteristics of the refinement structure of the two alloys with low undercooling are the same,but the characteristics of the refinement structure with high undercooling are opposite.The transmission electron microscopy(TEM)results of Cu60Ni38Co2 alloy show that the dislocation network density of low undercooled microstructure is lower than that of high undercooled microstructure.By combining EBSD and TEM,it could be confirmed that the dendrite remelting fracture is the reason for the refinement of the low undercooled structure,while the high undercooled structure is refined due to recrystallization.On this basis,in the processing of copper base alloys,there will be serious work hardening phenomenon and machining hard problem of consciousness problems caused by excessive cutting force.A twodimensional orthogonal turning finite element model was established using ABAQUS software to analyze the changes in cutting speed and tool trajectory in copper based alloy ultrasonic elliptical vibration turning.The results show that in copper based alloy ultrasonic elliptical vibration turning,cutting process parameters have a significant impact on cutting force.Choosing reasonable process parameters can effectively reduce cutting force and improve machining quality.
基金Projects(51204053,51074048,51204048)supported by the National Natural Science Foundation of ChinaProject(20110491518)supported by China Postdoctoral Science FoundationProject(2012CB619506)supported by the National Basic Research Program of China
文摘The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.
文摘The compound CeNi 5Sn was studied by means of X ray powder diffraction technique and refined by Rietveld method. It has a hexagonal structure with space group P 6 3/ mmc (No.194), Z =4, the lattice constants a =0 48912(3) nm, c =1 973(2) nm and D x=8 974 g·cm -3 . The Rietveld structural refinement was performed, leading to R p=0 138 and R wp =0 185. The figure of merit F N for the XRD data is F 30 =82 1(0 0068, 54). The X ray powder diffraction data are presented.
文摘The crystal structure of compound ErNiSb has been refined by the Rietveld wholepatternfitting method from X-ray powder diffraction data.The compound ErNiSb is cubic, space group F43m and the structure parameters and reliability factors were refined to be a=6.268 3(1), V=246.29^(3), Z=4, D_(x)=9.377 g/cm^3, R_(B)=3.57%, R_(F)=3.64%, R_(p)=6.63%, R_(WP)=8.80%.
文摘In this paper the solidification behavior of Sn-Sb peritectic alloy and the mechanism of grain refinement in solidification process under high-intensity ultrasonic field are investigated. Three different powers of high-intensity ultrasound are introduced into molten Sn-Sb peritectic alloy to study the refining effectiveness. The results show that the application of high-intensity ultrasound during solidification process of Sn-Sb peritectic alloy can refine α phase and β phase and eliminate gravity segregation of the alloy. As acoustic intensity is increased from 400 W to 800 W, not only the homogenous fine structure can be obtained, but also the cubic β phase crystals tend to be spherical. Microstructure of the sample treated by 600 W high-intensity ultrasound demonstrates the best refining effect.
文摘QPA (Quantitative Phase Analysis) of carbonate rocks bearing calcite and dolomite using X-ray diffractometry (XRD) can be performed using the combined Rietveld Structure Refinement (RSR) and semiquantitative Reference Intensity Ratio (RIR) methods, providing an estimation of crystalline phase in a mixture. Different ratios of five samples were prepared by mixing these crystal minerals with high sensitively. The scan speeds, adequate to determine mineral phases in rock samples, were used as 6 degrees per minute with 0.08 steps. The XRD analysis with commercial TOPAS 3.0 program, defined by a new generation of profile and structure analysis software, based on RSR provides Bragg reflection profiles and the dimension of the unit cell of a phase. The weight fractions of each phase were found by Le Bail and Pawley methods in RSR using a pseudo-Voigt peak shape model. The samples were also characterized by using X-ray fluorescence (XRF) and atomic absorption spectrometer (AAS). These analyses were conducted to compare these results with those obtained from the RSR. In addition to these, RSR of phases is very important to improve the goodness of fit (GOF). Therefore, the discussions of refinement of the carbonate mixing were made and a refinement procedure was given for these mixing in detail. Taking advantage of the RSR with the addition of an internal standard, the phase fraction of all the crystalline phases as well as the amorphous component, has been accurately determined. RSR technique offers a valid support for the characterization of marble in the light of industrial products.
文摘Although stolzite was discovered in Yaogangxian, Hunan Province, China, in 1948, no formal report about this mineral has been published. Recently its crystal structure has been refined by means of the Rietveld method. The cell dimensions of the mineral are: a=b= 0.544503(3) nm, c= 1.20495(1)nm and α=β=γ=90° . The X, Y and Z coordinates of the atom O refined by the authors are 0.2637, 0.1137 and 0.0706, respectively. The length of the W-O bond is 0.17826 nm and the angle of the O-W-O bound are 123° and 103° ,respectively.
基金Project(2009AA03Z110) supported by the National High Technology Research and Development Program of ChinaProject (2011CB012902) supported by the National Basic Research Program of China
文摘The application of electric current pulse(ECP) to a solidification process refers to the immersion of electrodes into the liquid metal and the employment of thermal insulators on the upper surface of metal.In order to ascertain the effects of these two factors on the structure refinement by the ECP technique,three groups of experiments were performed with different types of electrodes or various thermal insulators.By the comparison between solidification structures under different conditions,it is followed that the electrode and the thermal insulator have an obvious influence on the grain refinement under an applied ECP,and further analysis demonstrates that the thermal conditions of the liquid surface play a vital role in the modification of solidification structure.Also,the results support the viewpoint that most of the equiaxed grains originate from the liquid surface subjected to an ECP.
基金Projects(51074031,51271042,50874022)supported by the National Natural Science Foundation of ChinaProject(2013M530913)supported by the China Postdoctoral Science FoundationProject(DUT12RC(3)35)supported by the Fundamental Research Funds for the Central Universities of China
文摘The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.
基金Funded Partly by the Key Project of National High Technology Research and Development Program-"863"Program(No.2009AA050703)the National Natural Science Foundation of China(Nos.41302028,41272050,and 21007052)the Open Foundation of Joint Laboratory for Extreme Conditions Matter Properties,Southwest University of Science and Technology and Research Center of Laser Fusion,CAEP(No.12zxjk04)
文摘The phase of pyrochlore Gd_2Zr_2O_7 used for immobilization of Pu (Ⅳ) was investigated, tetravalent cerium was used as the simulacrum for plutonium with tetravalence, and the compounds in the system Gd_2Zr_2-_xCe_xO_7 (0.0≤x≤2.0) were synthesized via a high temperature solid reaction method with Gd_2O_3 and ZrO_2 powders being used as the starting materials. Based on the collected XRD data of the gained samples, the phase and microstructural change of compounds were calculated by means of rietveld structural refinement method. The experimental results indicated that the phases of compounds were changed from pyrochlore to fluorite-type phase with the increasing x. The linear relation between a and x was discovered in the range of fluorite-type phase, which accorded with a = 0.52748 + 0.00825 x (0.2≤x≤2.0), while V= 0.14668 + 0.00711 x (0.2≤x≤2.0) was also achieved.
文摘This research reports the processing of magnesium matrix composites reinforced with silicon carbide(SiC)and aluminium oxide(Al_(2)O_(3))using powder metallurgy technique through high energy milling.Samples of Mg-SiC and Mg-Al_(2)O_(3)composites subjected to high energy ball milling for different vol%of secondary particles 20,30 and 40%of SiC and Al_(2)O_(3)are studied by X-Ray diffraction technique.The rietveld method as implemented in the Fullprof program is applied in order to determine the quantities of the resulting crystalline phases and amorphous phases at each stage of the mechanical treatment.Microstructural examination is carried out using Scanning Electron Microscope(SEM).In addition,crystal structural analysis using appropriate size and strain models is performed in order to handle the distinctive anistrophy that is observed in convinced crystallographic directions for the magnesium composite.The results are furnished in terms of crystalline domains size enlargement of the magnesium composites phases upon prolonged milling duration and discussed in the light of up to date views and theories on crystal growth of nanocrystaline materials.The hardness of the composite samples is calculated by Vickers’s Hardness tester.Further,dry sling wear test and corrosion test are performed for the fabricated composites.Composite with 30%secondary particles incorporated magnesium composites exhibits better wear and corrosion resistance than the other composites.
基金supported by the National Natural Science Foundation of China (Grant No.41130418)the National Major Project of China (under grant 2017ZX05008-007)+1 种基金supports from the Youth Innovation Promotion Association CAS (2012054)Foundation for Excellent Member of the Youth Innovation Promotion Association (2016)
文摘Numerical solver using a uniform grid is popular due to its simplicity and low computational cost, but would be unfeasible in the presence of tiny structures in large-scale media. It is necessary to use a nonuniform grid, where upsampling the wavefield from the coarse grid to the fine grid is essential for reducing artifacts. In this paper, we suggest a local refinement scheme using the Fourier interpolation, which is superior to traditional interpolation methods since it is theoretically exact if the input wavefield is band limited.Traditional interpolation methods would fail at high upsampling ratios(say 50); in contrast, our scheme still works well in the same situations, and the upsampling ratio can be any positive integer. A high upsampling ratio allows us to greatly reduce the computational burden and memory demand in the presence of tiny structures and large-scale models, especially for 3D cases.
基金This work is financially supported by the National Natural Science Foundation of China(Grant Nos.52072137,51802105).
文摘Tin (Sn) metal foil is a promising anode for next-generation high-energy–density lithium-ion batteries (LIBs) due to its high capacity and easy processibility. However, the pristine Sn foil anode suffers nonuniform alloying/dealloying reaction with lithium (Li) and huge volume variation, leading to electrode pulverization and inferior electrochemical performance. Herein, we proposed that reduced grain size and elaborate porosity design of Sn foil can circumvent the nonuniform alloy reaction and buffer the volume change during the lithiation/delithiation cycling. Experimentally, we designed a three-dimensional interconnected porous Sn (3DIP-Sn) foil by a facile chemical alloying/dealloying approach, which showed improved electrochemical performance. The enhanced structure stability of the as-fabricated 3DIP-Sn foil was verified by chemo-mechanical simulations and experimental investigation. As expected, the 3DIP-Sn foil anode revealed a long cycle lifespan of 4400 h at 0.5 mA cm^(−2) and 1 mAh cm^(−2) in Sn||Li half cells. A 3DIP-Sn||LiFePO_(4) full cell with LiFePO_(4) loading of 7.1 mg cm^(−2) exhibited stable cycling for 500 cycles with 80% capacity retention at 70 mA g^(−1). Pairing with high-loading commercial LiNi0.6Co0.2Mn0.2O_(2) (NCM622, 18.4 mg cm^(−2)) cathode, a 3DIP-Sn||NCM622 full cell delivered a high reversible capacity of 3.2 mAh cm^(−2). These results demonstrated the important role of regulating the uniform alloying/dealloying reaction and circumventing the localized strain/stress in improving the electrochemical performance of Sn foil anodes for advanced LIBs.
文摘オ-ray powder diffraction data and crystal structure of RE compound NdCoGe3 were studied by using X-ray powder diffraction and refined by the Rietveld profile fitting method. The compound has the tetragonal BaNiSn3type structure, space group I4mm (No.107) a=0.42961(2) nm, c=098147(4) nm, V=0.018114 nm3, Z=2 and Dx=7.717 g·cm-3. The figure of merit FN for the powder data is F30=623 (0.0107, 45). Structure refinement was performed with 110 reflections and led to Rp=11.78% and Rwp=16.56%.
文摘The X-ray diffraction analyses show that the existence of a continuous solid solution of Al_xSb_ 3-xY_5 (0≤x≤216). Al_xSb_ 3-xY_5 crystallizes in the hexagonal system with the space group P6_3/mcm (193) and Mn_5Si_3 structure type. The cell parameters for Al_2SbY_5 compound at 25 ℃ are a=0.88086 (2) nm, c=0.64662 (2) nm.
文摘In this paper,the principle of Pulsed Magnetic Field(PMF) force was analyzed through mathematical analyses.By theoretical analysis and calculation,the results show that the great electromagnetic force is made in the melt under pulsed magnetic field,as well as changing its direction in different places of melt at the same time.It enforces the crystallizing nucleus and brittle crystallite to fragment in the solidification processing.From the point of view,one of the main factors of grain refinement is that the fragmentations occur under a pulsed magnetic field by preliminary judgement. The feasibility of application in the metallurgical industry under PMF was discussed through comparing the results of grain refinement under EMS.According to the theoretic calculation,the power consumption under EMS is 5 -8 times the amount under PMF,when both of magnetic flux density B are 0.07T.That is to say,the better effect on grain refining can be obtained under PMF,compared with EMS,even in the lower power consumption.The solidification experiments of Sn-20%Pb alloy are conducted under the same experimental conditions that the magnetic intensity is 0.07T in the center of the crucible,it also shows that PMF has a better effect on grain refining than EMS. Combined with the continuous casting process,the influence of pulsed parameters and the metallurgical effects with applying PMF at different solidification stages was investigated.There are different grain refining effects under PMF in different solidification stages,and there are different grain refining effects under PMF in different PMF parameters.For the Sn-20%Pb alloy or silicon steel,it is more effective during the initial stage,in which the pulse frequency is 5Hz.For the Sn-20%Pb alloy,the average grain size ofβphase is the smallest,when applying the PMF during the temperature of melt decreasing from 201℃to 184℃.Further investigation of the specified technique parameters for industrial applications are required.
文摘One of the critical issues in numerical simulation of fluid-structure interaction problems is inaccuracy of the solutions,especially for flows past a stationary thin elastic structure where large deformations occur.High resolution is required to capture the flow characteristics near the fluid-structure interface to enhance accuracy of the solutions within proximity of the thin deformable body.Hence,in this work,an algorithm is developed to simulate fluid-structure interactions of moving deformable structures with very thin thicknesses.In this algorithm,adaptive mesh refinement(AMR)is integrated with immersed boundary finite element method(IBFEM)with two-stage pressure-velocity corrections.Despite successive interpolation of the flow field by IBM,the governing equations were solved using a fixed structured mesh,which significantly reduces the computational time associated with mesh reconstruction.The cut-cell IBM is used to predict the body forces while FEM is used to predict deformation of the thin elastic structure in order to integrate the motions of the fluid and solid at the interface.AMR is used to discretize the governing equations and obtain solutions that efficiently capture the thin boundary layer at the fluid-solid interface.The AMR-IBFEM algorithm is first verified by comparing the drag coefficient,lift coefficient,and Strouhal number for a benchmark case(laminar flow past a circular cylinder at Re=100)and the results showed good agreement with those of other researchers.The algorithm is then used to simulate 2-D laminar flows past stationary and moving thin structures positioned perpendicular to the freestream direction.The results also showed good agreement with those obtained from the arbitrary Lagrangian-Eulerian(ALE)algorithm for elastic thin boundaries.It is concluded that the AMR-IBFEM algorithm is capable of predicting the characteristics of laminar flow past an elastic structure with acceptable accuracy(error of-0.02%)with only-1%of the computational time for simulations with full mesh refinement.