Many plants exhibit heterophylly; the spatially and temporally remarkable ontogenetic differences in leaf morphology may play an adaptative role in their success under diverse habitats. Thus, this study aimed to gain ...Many plants exhibit heterophylly; the spatially and temporally remarkable ontogenetic differences in leaf morphology may play an adaptative role in their success under diverse habitats. Thus, this study aimed to gain insights into differences in leaf functional traits of heterophyllous Syringa oblata Lindl., which has been widely used as an ornamental tree around the world under different light intensities in East China. No significant differences existed in specific leaf area (SLA) between lanceolate- and heart-shaped leaves. Differ- ences in the investment per unit of light capture surface area deployed between lanceolate- and heart-shaped leaves may benot obvious. This may be attributing to the fact that single leaf wet and dry weight of heart-shaped leaves were significantly higher than those of lanceolate leaves but leaf length and leaf thickness of heart-shaped leaves were significantly lower than those of lanceolate leaves. The SLA of shade trees was sig- nificantly higher than that of sun trees. The investment per unit of light capture surface of shade trees was lower than that of sun trees, making it possible to increase light capture and use efficiency in low-light environments. The phenotypic plas- ticity of most leaf functional traits of lanceoiate leaves was higher than those of heart-shaped leaves because the former is the juvenile and the latter is the adult leaf shape during the process of phylogenetic development of S. oblate. The higher range of phenotypic plasticity of leaf thickness and leaf moisture for sun trees may be beneficial to obtain a more efficient control of water loss and nutrient deprivation in high- light environments, and the lower range of phenotypic plas- ticity of single leaf wet and dry weight, and SLA for shade trees may gain an advantage to increase resource (especially light) capture and use efficiency in low-light environments. In brief, the successfully ecological strategy of plants is to find an optimal mode for the trade-off between various functional traits to obtain more living resources and achieve more fitness advantage as much as possible in the multivariate environment.展开更多
Syringa species not only have good ornamental properties but also play an important role in the landscaping and environmental purification of cities.To investigate the chilling stress resistance of Syringa oblata Lind...Syringa species not only have good ornamental properties but also play an important role in the landscaping and environmental purification of cities.To investigate the chilling stress resistance of Syringa oblata Lindl.and Syringa reticulata var.mandshurica and provide theoretical grounds for the practical cultivation of Syringa species,in vitro leaves were used to study photosynthetic gas exchange parameters and chlorophyll fluorescence parameters.After nine hours of chilling,decreasing rates of net photosynthesis,stomatal conductance,and transpiration in S.reticulata var.mandshurica leaves were significantly greater than that of the S.oblata,while intercellular CO2 concentrations in S.oblata leaves were higher than those in S.reticulata var.mandshurica.The quantum yield of PSII reaction center(APSII)declined in S.reticulata and light capture efficiency(Fv 0/Fm 0)was stable.However,reduction percentages of Fv 0/Fm 0,APSII,and Fv/Fm in S.oblata were significant higher than those of S.reticulata var.mandshurica.After nine hours of chilling,the relative variable fluorescence of VJ and VI of S.oblata increased and the increasing rate of VJ was greater than VI.In contrast,the change of VJ and VI in S.reticulata var.mandshurica leaves was relatively small.This suggests that chilling primarily damaged the electron transport process of QA to QB at the receptor site of the PSII reaction center.Photosynthetic capacity of S.oblata was more sensitive to chilling stress compared to S.reticulate var.mandshurica,which the limitations were mainly due to non-stomatal factors such as the decrease in electron transport efficiency,activity in the PSII reaction center,and the destruction of the photodamage defense system.展开更多
采用响应面分析法对丁香叶总皂苷提取工艺进行优化。以总皂苷提取率为考察指标,在单因素实验基础上,采用响应面分析法对乙醇浓度、液料比、提取温度和提取时间进行优化。结果表明,乙醇回流提取总皂苷的最佳工艺条件为:乙醇浓度82%、液料...采用响应面分析法对丁香叶总皂苷提取工艺进行优化。以总皂苷提取率为考察指标,在单因素实验基础上,采用响应面分析法对乙醇浓度、液料比、提取温度和提取时间进行优化。结果表明,乙醇回流提取总皂苷的最佳工艺条件为:乙醇浓度82%、液料比25∶1 m L/g、提取温度85℃、提取时间116 min、提取次数2次,在此条件下总皂苷提取率为(69.655±0.0145)mg/g,与理论值仅相差0.461 mg/g,表明此模型准确可靠,是提取丁香叶总皂苷的可行方法。展开更多
基金supported by the National Natural Science Foundation of China(31300343,31170386)Natural Science Foundation of Jiangsu Province,China(BK20130500)+3 种基金Universities Natural Science Research Project of Jiangsu Province,China(13KJB610002)Jiangsu Collaborative Innovation Center of Technology and Material of Water TreatmentProject Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Research Foundation for Advanced Talents,Jiangsu University(12JDG086)
文摘Many plants exhibit heterophylly; the spatially and temporally remarkable ontogenetic differences in leaf morphology may play an adaptative role in their success under diverse habitats. Thus, this study aimed to gain insights into differences in leaf functional traits of heterophyllous Syringa oblata Lindl., which has been widely used as an ornamental tree around the world under different light intensities in East China. No significant differences existed in specific leaf area (SLA) between lanceolate- and heart-shaped leaves. Differ- ences in the investment per unit of light capture surface area deployed between lanceolate- and heart-shaped leaves may benot obvious. This may be attributing to the fact that single leaf wet and dry weight of heart-shaped leaves were significantly higher than those of lanceolate leaves but leaf length and leaf thickness of heart-shaped leaves were significantly lower than those of lanceolate leaves. The SLA of shade trees was sig- nificantly higher than that of sun trees. The investment per unit of light capture surface of shade trees was lower than that of sun trees, making it possible to increase light capture and use efficiency in low-light environments. The phenotypic plas- ticity of most leaf functional traits of lanceoiate leaves was higher than those of heart-shaped leaves because the former is the juvenile and the latter is the adult leaf shape during the process of phylogenetic development of S. oblate. The higher range of phenotypic plasticity of leaf thickness and leaf moisture for sun trees may be beneficial to obtain a more efficient control of water loss and nutrient deprivation in high- light environments, and the lower range of phenotypic plas- ticity of single leaf wet and dry weight, and SLA for shade trees may gain an advantage to increase resource (especially light) capture and use efficiency in low-light environments. In brief, the successfully ecological strategy of plants is to find an optimal mode for the trade-off between various functional traits to obtain more living resources and achieve more fitness advantage as much as possible in the multivariate environment.
文摘Syringa species not only have good ornamental properties but also play an important role in the landscaping and environmental purification of cities.To investigate the chilling stress resistance of Syringa oblata Lindl.and Syringa reticulata var.mandshurica and provide theoretical grounds for the practical cultivation of Syringa species,in vitro leaves were used to study photosynthetic gas exchange parameters and chlorophyll fluorescence parameters.After nine hours of chilling,decreasing rates of net photosynthesis,stomatal conductance,and transpiration in S.reticulata var.mandshurica leaves were significantly greater than that of the S.oblata,while intercellular CO2 concentrations in S.oblata leaves were higher than those in S.reticulata var.mandshurica.The quantum yield of PSII reaction center(APSII)declined in S.reticulata and light capture efficiency(Fv 0/Fm 0)was stable.However,reduction percentages of Fv 0/Fm 0,APSII,and Fv/Fm in S.oblata were significant higher than those of S.reticulata var.mandshurica.After nine hours of chilling,the relative variable fluorescence of VJ and VI of S.oblata increased and the increasing rate of VJ was greater than VI.In contrast,the change of VJ and VI in S.reticulata var.mandshurica leaves was relatively small.This suggests that chilling primarily damaged the electron transport process of QA to QB at the receptor site of the PSII reaction center.Photosynthetic capacity of S.oblata was more sensitive to chilling stress compared to S.reticulate var.mandshurica,which the limitations were mainly due to non-stomatal factors such as the decrease in electron transport efficiency,activity in the PSII reaction center,and the destruction of the photodamage defense system.
文摘采用响应面分析法对丁香叶总皂苷提取工艺进行优化。以总皂苷提取率为考察指标,在单因素实验基础上,采用响应面分析法对乙醇浓度、液料比、提取温度和提取时间进行优化。结果表明,乙醇回流提取总皂苷的最佳工艺条件为:乙醇浓度82%、液料比25∶1 m L/g、提取温度85℃、提取时间116 min、提取次数2次,在此条件下总皂苷提取率为(69.655±0.0145)mg/g,与理论值仅相差0.461 mg/g,表明此模型准确可靠,是提取丁香叶总皂苷的可行方法。