System-wide information management(SWIM)is a complex distributed information transfer and sharing system for the next generation of Air Transportation System(ATS).In response to the growing volume of civil aviation ai...System-wide information management(SWIM)is a complex distributed information transfer and sharing system for the next generation of Air Transportation System(ATS).In response to the growing volume of civil aviation air operations,users accessing different authentication domains in the SWIM system have problems with the validity,security,and privacy of SWIM-shared data.In order to solve these problems,this paper proposes a SWIM crossdomain authentication scheme based on a consistent hashing algorithm on consortium blockchain and designs a blockchain certificate format for SWIM cross-domain authentication.The scheme uses a consistent hash algorithm with virtual nodes in combination with a cluster of authentication centers in the SWIM consortium blockchain architecture to synchronize the user’s authentication mapping relationships between authentication domains.The virtual authentication nodes are mapped separately using different services provided by SWIM to guarantee the partitioning of the consistent hash ring on the consortium blockchain.According to the dynamic change of user’s authentication requests,the nodes of virtual service authentication can be added and deleted to realize the dynamic load balancing of cross-domain authentication of different services.Security analysis shows that this protocol can resist network attacks such as man-in-the-middle attacks,replay attacks,and Sybil attacks.Experiments show that this scheme can reduce the redundant authentication operations of identity information and solve the problems of traditional cross-domain authentication with single-point collapse,difficulty in expansion,and uneven load.At the same time,it has better security of information storage and can realize the cross-domain authentication requirements of SWIM users with low communication costs and system overhead.KEYWORDS System-wide information management(SWIM);consortium blockchain;consistent hash;cross-domain authentication;load balancing.展开更多
When initializing cryptographic systems or running cryptographic protocols, the randomness of critical parameters, like keys or key components, is one of the most crucial aspects. But, randomly chosen parameters come ...When initializing cryptographic systems or running cryptographic protocols, the randomness of critical parameters, like keys or key components, is one of the most crucial aspects. But, randomly chosen parameters come with the intrinsic chance of duplicates, which finally may cause cryptographic systems including RSA, ElGamal and Zero-Knowledge proofs to become insecure. When concerning digital identifiers, we need uniqueness in order to correctly identify a specific action or object. Unfortunately we also need randomness here. Without randomness, actions become linkable to each other or to their initiator’s digital identity. So ideally the employed (cryptographic) parameters should fulfill two potentially conflicting requirements simultaneously: randomness and uniqueness. This article proposes an efficient mechanism to provide both attributes at the same time without highly constraining the first one and never violating the second one. After defining five requirements on random number generators and discussing related work, we will describe the core concept of the generation mechanism. Subsequently we will prove the postulated properties (security, randomness, uniqueness, efficiency and privacy protection) and present some application scenarios including system-wide unique parameters, cryptographic keys and components, identifiers and digital pseudonyms.展开更多
在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中由于快衰落导致信道特征不连续,常规的信道插值方法无法准确反应导频与整个信道之间的关联性。针对这一问题,提出了一种基于宽深超分辨率(Wide Deep Super-resol...在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中由于快衰落导致信道特征不连续,常规的信道插值方法无法准确反应导频与整个信道之间的关联性。针对这一问题,提出了一种基于宽深超分辨率(Wide Deep Super-resolution,WDSR)网络的信道估计方法,把导频值通过最小二乘估计(Least Squares,LS)初步插值,再通过WDSR网络再次放大重构整个信道的响应。将信道估计插值上采样替换成初步插值和图像超分辨率上采样两步。仿真结果表明,与超分辨率卷积神经网络(Super-resolution Convolutional Neural Network,SRCNN)信道估计算法相比,在不同种类的信道以及导频数下WDSR信道估计方法均方误差性能提升约4.6 dB。展开更多
以134份玉米自交系为试验材料,对玉米的9个苗期根系性状进行表型鉴定,并利用分布于玉米基因组的44935个SNP标记,基于FarmCPU模型进行全基因组关联分析(GWAS,genome-wide association study)。结果表明9个根系性状表型变异范围在10.86%~5...以134份玉米自交系为试验材料,对玉米的9个苗期根系性状进行表型鉴定,并利用分布于玉米基因组的44935个SNP标记,基于FarmCPU模型进行全基因组关联分析(GWAS,genome-wide association study)。结果表明9个根系性状表型变异范围在10.86%~55.96%之间,大部分表型间相关性达极显著水平(P<0.001),侧根长和总根长相关系数最高,为0.996,其次为侧根数与总根数达到0.993。共鉴定到32个显著关联的SNP位点(P=1.01e-11~9.74e-05),表型贡献率在0.54%~22.34%之间,主根长、总根长、最大根长、侧根长分别检测到4、8、3、9个显著的SNP位点;总根数、侧根数、不定根数分别检测到10、7、1个显著SNP位点;14个SNP位点同时与多个根系性状关联。12个显著关联位点位于已知根系相关性状QTL(Quantitative trait locus)区间内。共发掘49个根系候选基因,其中GRMZM2G028386(ABI4)、GRMZM2G135713(PUB23)、GRMZM5G870592(MYB98)、GRMZM2G156861(LOX1)、GRMZM2G160005(AUX16)、GRMZM2G126936(NAC2)等是重要的根系候选基因。本研究为克隆玉米根系发育相关基因,解析玉米根系发育分子机制提供了参考。展开更多
基金funded by the National Natural Science Foundation of China(62172418)the Joint Funds of the National Natural Science Foundation of China and the Civil Aviation Administration of China(U2133203)+1 种基金the Education Commission Scientific Research Project of Tianjin China(2022KJ081)the Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology(SH2021111907).
文摘System-wide information management(SWIM)is a complex distributed information transfer and sharing system for the next generation of Air Transportation System(ATS).In response to the growing volume of civil aviation air operations,users accessing different authentication domains in the SWIM system have problems with the validity,security,and privacy of SWIM-shared data.In order to solve these problems,this paper proposes a SWIM crossdomain authentication scheme based on a consistent hashing algorithm on consortium blockchain and designs a blockchain certificate format for SWIM cross-domain authentication.The scheme uses a consistent hash algorithm with virtual nodes in combination with a cluster of authentication centers in the SWIM consortium blockchain architecture to synchronize the user’s authentication mapping relationships between authentication domains.The virtual authentication nodes are mapped separately using different services provided by SWIM to guarantee the partitioning of the consistent hash ring on the consortium blockchain.According to the dynamic change of user’s authentication requests,the nodes of virtual service authentication can be added and deleted to realize the dynamic load balancing of cross-domain authentication of different services.Security analysis shows that this protocol can resist network attacks such as man-in-the-middle attacks,replay attacks,and Sybil attacks.Experiments show that this scheme can reduce the redundant authentication operations of identity information and solve the problems of traditional cross-domain authentication with single-point collapse,difficulty in expansion,and uneven load.At the same time,it has better security of information storage and can realize the cross-domain authentication requirements of SWIM users with low communication costs and system overhead.KEYWORDS System-wide information management(SWIM);consortium blockchain;consistent hash;cross-domain authentication;load balancing.
文摘When initializing cryptographic systems or running cryptographic protocols, the randomness of critical parameters, like keys or key components, is one of the most crucial aspects. But, randomly chosen parameters come with the intrinsic chance of duplicates, which finally may cause cryptographic systems including RSA, ElGamal and Zero-Knowledge proofs to become insecure. When concerning digital identifiers, we need uniqueness in order to correctly identify a specific action or object. Unfortunately we also need randomness here. Without randomness, actions become linkable to each other or to their initiator’s digital identity. So ideally the employed (cryptographic) parameters should fulfill two potentially conflicting requirements simultaneously: randomness and uniqueness. This article proposes an efficient mechanism to provide both attributes at the same time without highly constraining the first one and never violating the second one. After defining five requirements on random number generators and discussing related work, we will describe the core concept of the generation mechanism. Subsequently we will prove the postulated properties (security, randomness, uniqueness, efficiency and privacy protection) and present some application scenarios including system-wide unique parameters, cryptographic keys and components, identifiers and digital pseudonyms.
文摘以134份玉米自交系为试验材料,对玉米的9个苗期根系性状进行表型鉴定,并利用分布于玉米基因组的44935个SNP标记,基于FarmCPU模型进行全基因组关联分析(GWAS,genome-wide association study)。结果表明9个根系性状表型变异范围在10.86%~55.96%之间,大部分表型间相关性达极显著水平(P<0.001),侧根长和总根长相关系数最高,为0.996,其次为侧根数与总根数达到0.993。共鉴定到32个显著关联的SNP位点(P=1.01e-11~9.74e-05),表型贡献率在0.54%~22.34%之间,主根长、总根长、最大根长、侧根长分别检测到4、8、3、9个显著的SNP位点;总根数、侧根数、不定根数分别检测到10、7、1个显著SNP位点;14个SNP位点同时与多个根系性状关联。12个显著关联位点位于已知根系相关性状QTL(Quantitative trait locus)区间内。共发掘49个根系候选基因,其中GRMZM2G028386(ABI4)、GRMZM2G135713(PUB23)、GRMZM5G870592(MYB98)、GRMZM2G156861(LOX1)、GRMZM2G160005(AUX16)、GRMZM2G126936(NAC2)等是重要的根系候选基因。本研究为克隆玉米根系发育相关基因,解析玉米根系发育分子机制提供了参考。