The use of sequential stratigraphy concept, based on well logs, sedimentology, and biostratigraphy, has shed light on the complex mechanisms controlling sedimentary accumulations. Consequently, identifying these mecha...The use of sequential stratigraphy concept, based on well logs, sedimentology, and biostratigraphy, has shed light on the complex mechanisms controlling sedimentary accumulations. Consequently, identifying these mechanisms allows us to predict the hydrocarbon generation potential of source rocks. In the Ivorian offshore sedimentary basin, certain studies have contributed to understanding and characterizing the petroleum system. However, these previous works did not integrate biostratigraphic data to highlight sedimentary facies. This study, conducted on two wells in the Abidjan margin, is crucial as it helps us comprehend the geometry of fossil sediments in relation to sea level variations. It will also aid in reconstructing the basin-filling history and predicting the distribution of rocks capable of trapping oil, determining lowstand systems tracts (reservoir rocks), transgressive systems tracts, and highstand systems tracts (cap rocks). Lithological analysis revealed predominantly clayey sedimentation with sandy layers. Well log data facilitated the delineation of formation boundaries and highlighted reservoirs consisting of sands, sandstones, limestones, and occasionally intercalated shales. Integrating these analysis results with biostratigraphic interpretations based on foraminifera and palynomorphs revealed that the traversed formations were deposited in a transitional environment ranging from Coniacian to Maastrichtian ages. Applying sequential stratigraphy concept from well logging resolved dating issues encountered in microfossil-poor or microfossil-free zones. The results of the Coniacian-Maastrichtian age sequential subdivision were aligned with the chart.展开更多
The utilization of sequence stratigraphic concepts in identifying sands and their spatial continuity in distinct gross depositional settings is key,especially in frontier settings where data paucity is a common challe...The utilization of sequence stratigraphic concepts in identifying sands and their spatial continuity in distinct gross depositional settings is key,especially in frontier settings where data paucity is a common challenge.In the Baka field,onshore Niger Delta,detailed reservoir correlation guided by sequence stratigraphic framework analysis showed the distribution of sand and shale units constituting reservoirseal pairs(RSP)correlatable across the field.Within the 3rd-order packages,it is observed that the lowstand systems tract(LST)and highstand systems tract(HST)contain more RSPs and thicker 4th-and 5th-order sands than the transgressive systems tract(TST).In terms of bathymetry,it is noted that irrespective of systems tracts,the RSP Index(RI)decreases from the proximal shallow/inner shelf settings to the more distal outer shelf areas.Amongst all three systems tracts,intervals interpreted as lowstand prograding complexes contain the best developed sands and highest RSP.Sand development within the LSTs has been controlled by a pronounced growth fault regime accompanied by high subsidence and sedimentation rates.This is linked to the basinward migration of the sands during prolonged sea-level fall,creating significant accommodation space for sand deposition.On the other hand,the TSTs known to mark periods of progressive sea-level rise and landward migration of sandy facies,show thinner sands enclosed in much thicker,laterally extensive,and better-preserved deeper marine shales.Interpreted seismic sections indicate intense growth faulting and channelization that influenced the syn-and postdepositional development of the sand packages across the field.The initial timing of deformation of subregional faults in this area coincides with periods of abrupt falls in sea level.This approach could be useful for predicting sand-prone areas in frontier fields as well as possible reservoir-seal parameters required for some aspects of petroleum system analysis and quick-look volume estimation.展开更多
The Jurassic in the East Fukang Slope can be divided into six sequences based on sequence stratigraphy by combining logging, core and seismic data. The indicators of sequence boundaries include unconformity, coal seam...The Jurassic in the East Fukang Slope can be divided into six sequences based on sequence stratigraphy by combining logging, core and seismic data. The indicators of sequence boundaries include unconformity, coal seams, change of spore and pollen abundance, scour surfaces and base conglomerate, change of logging curve and sedimentary facies. How to determine the location of the first flooding surfaces and the maximum flooding surface is the key step to divide the systems tract. There occurred a topographic slope break in the East Fukang Slope when the Jurassic was deposited, and therefore we can recognize the location of the first flooding surface and establish the sequence stratigraphic framework with the slope break in the study area. Coal seams regionally distributed are correlatable and isochronic, and record the termination of a depositional event or episode. So, the regional coal seam (more than 60 percent coverage) can be used as the genetic stratigraphic sequence boundary, while locally distributed coal seam (less than 60 percent coverage) can be used as the systems tract boundary. The thick coal seams distributed regionally in the middle of the Badaowan Formation and the lower part of the Xishanyao Formation in the study area act as the sequence boundaries, while the thin and locally distributed coal seam acts as the systems tract boundary, which results in the correlation of the division of sequence stratigraphy of the Jurassic to the whole basin where coal seams are developed extensively.展开更多
Sequence stratigraphy can be used to predict the oil and gas reservoir bodies and to choose the oil targets. Fan delta and sublacustrine fan systems are developed in the HGZ Area, which is located in front of the Altu...Sequence stratigraphy can be used to predict the oil and gas reservoir bodies and to choose the oil targets. Fan delta and sublacustrine fan systems are developed in the HGZ Area, which is located in front of the Altun Mountain in the west of the Qaidam Basin. On the basis of seismic and well drilling data, the deposits in the area were studied by using sequence stratigraphy and reservoir prediction techniques. Various reservoir prediction techniques used under the constraint of high resolution sequence framework could help to improve the precision of reservoir prediction and to recognize the pinch out line of sand layers, the distribution of isolated sandstone bodies and the types of oil pools. The study of sequence stratigraphy makes reservoir prediction more effective by dividing different scales of sequences and distinguishing the system tracts and parasequence sets, and indicates the internal relationship between oil/gas and sedimentary bodies in different system tracts with evolution in time and space.展开更多
The early Miocene in the Zhu Ⅲ subbasin, the Pearl River Mouth basin, includes two formations-Zhujiang and Zhuhai. There are 8 third-order sequences, S1, S2, S3, S4, S5, S6, S7 and S8 from the bottom of Zhuhai to th...The early Miocene in the Zhu Ⅲ subbasin, the Pearl River Mouth basin, includes two formations-Zhujiang and Zhuhai. There are 8 third-order sequences, S1, S2, S3, S4, S5, S6, S7 and S8 from the bottom of Zhuhai to the top of Zhujiang in thee two formations. There are only one transgressive systems tract (TST) and one highstand systems tract (HST) in each sequence because the whole Zhu Ⅲ subbasin was located updip the shelf break during sequence deposition. The boundaries and maximum flooding surfaces (mfs) are in good response to both gamma and acoustic log curves in the study area. In seismic profile 1249, sediments obviously onlap over the unconformity (SB0, the bottom of Zhuhai Fm), SB1 and SB2, but obviously over only SB2 in seismic profile 1283 since the well- devel-oped faults in the subbasin. The sand bodies with high porosity and permeability for Petroleum migration and accumulation had been reworked by tidal currents before their burial. Hence, the tidal influenced parasequence sets occur both in TST and HST. Through detailed analysis, the sand bodies in TST are more favorable for Petroleum to migrate and accumulate than those in HST.展开更多
The basic concepts of sequence stratigraphy can be applied to any cyclic successions regardless of their origin being marias or nonmarine .The storm base can be taken as the base level at the gentle slope side of a f...The basic concepts of sequence stratigraphy can be applied to any cyclic successions regardless of their origin being marias or nonmarine .The storm base can be taken as the base level at the gentle slope side of a faulted basin for distinguishing the systems tractS as no shelf edge is present in nonmarihe fault6d basins. Most of coatinuous rethetions with high amplitude in seismic sections, misunderstood previously as the boundaries of stratigraphic unit, are maximum flooding surface (MFS)in fact. Abundant and diversified microfossils and nannofossils high content of organic carbon,various authigenic minerals such as glauconie,siderite are concentrated nearby these surfaces. It means that the open sea water invaded iato the faulted basins many times in Cretaceous and Paleogene, which make a restricted environment favourable for oil generation. The trend of lake level changes is similar to that of Haq's curve generally, however, the influence of local movements and autostrahgraphic events have to be colandered. The stratal patterns and models of nonmarine sequence are proposed.展开更多
According to the latest International Chronostratigraphic Scheme (ICS, 2000), the Permian in the Middle Lower Yangtze region of South China can be divided into three series and nine stages relevant to the traditional...According to the latest International Chronostratigraphic Scheme (ICS, 2000), the Permian in the Middle Lower Yangtze region of South China can be divided into three series and nine stages relevant to the traditional six stages of South China. From Assellian to Changxingian of Permian, 44 Ma in age range, the strata are composed of 14 third order sequences, each of which is 3.14 Ma in average age range. There is one third order sequence of Zisongian, equivalent to middle and upper Chuanshan Formation or equal to Asselian and two thirds of Sakmarian. There are two third order sequences, corresponding to Liang shan Formation or Zhenjiang Formation and upper Chuanshan Formation, which are assigned to Longlingian, coinciding with Artinskian and one third of Sakmarian. In addition, three third order sequences, equal to Qixia Formation, are attributed to Chihsian, corresponding to Kubergandian and one third of Roadian. Four third order sequences, comprising Gufeng, Maokou, Yanqiao, Yinping and Wuxue formations, are assigned to Maokouan, equivalent to two thirds of Roadian, Wordian and Capitanian. Two third order sequences, equal to Longtan Formation or Wujiaping Formation, are included in Wuchiapingian. Other two third order sequences, corresponding to Changxing Formation or Dalong Formation, are assigned to Changhsingian. In brief, these above third order sequences can be incorporated into 4 sequences sets.展开更多
The seismic sequence stratigraphic analysis revealed four depositional sequences(DS-1,DS-2,DS-3 and DS-4).The accompanying systems tracts were interpreted and mapped in the study area based on the log motifs of the re...The seismic sequence stratigraphic analysis revealed four depositional sequences(DS-1,DS-2,DS-3 and DS-4).The accompanying systems tracts were interpreted and mapped in the study area based on the log motifs of the reference well and the spatial distribution of the recognized constrained surfaces:maximum flooding surfaces(MFSs),sequence boundaries(SBs)and transgressive surfaces(TSs)on the seismic data.Depositional systems in the study area comprise lowstand systems tracts(LSTs),transgressive systems tracts(TSTs)and highstand systems tracts(HSTs).The LSTs are represented by coeval facies dominated by deposition basinward of the shelf-edge during maximum regression and are characterized by shallow-water deposition from gravity flows and/or traction processes within the shelf-edge or canyon-head delta.The sediments associated with lowstand systems tracts recognized in the study area are the fluvial channel sands and slope fans(SF).The transgressive sand units were interpreted as shoreface sands deposited in the shelf region during rising sea levels.Highstand systems tracts are characterized by intervals of coarsening and shallowing upwards,with both fluvial and deltaic sands prograding laterally into neritic shales.In the study area,the units are very thick.The highstand and lowstand system tracts exhibit blocky log patterns and are associated with the reservoirs while the transgressive system tracts serve as seals to the reservoirs.The environment of sediments deposition in this area is delta plain,shelf,slope to toe of slope.展开更多
When we look back the contributions on submarine fans during the past 65 years (1950 -2015), the empirical data on 21 modern submarine fans and I0 ancient deep-water sys- tems, published by the results of the First ...When we look back the contributions on submarine fans during the past 65 years (1950 -2015), the empirical data on 21 modern submarine fans and I0 ancient deep-water sys- tems, published by the results of the First COMFAN (Committee on FANs) Meeting (Bouma eta|., 1985a), have remained the single most significant compilation of data on submarine fans. The 1970s were the "heyday" of submarine fan models. In the 21st century, the general focus has shifted from submarine fans to submarine mass movements, internal waves and tides, and contourites. The purpose of this review is to illustrate the complexity of issues surrounding the origin and classification of submarine fans. The principal ele- ments of submarine fans, composed of canyons, channels, and lobes, are discussed using nine modern case studies from the Mediterranean Sea, the Equatorial Atlantic, the Gulf of Mexico, the North Pacific, the NE Indian Ocean (Bay of Bengal), and the East Sea (Korea). The Annot Sandstone (Eocene-Oligocene), exposed at Peira-Cava area, SE France, which served as the type locality for the "Bouma Sequence", was reexamined. The field details are documented in questioning the validity of the model, which was the basis for the turbidite- fan link. The 29 fan-related models that are of conceptual significance, developed during the period 1970-2015, are discussed using modem and ancient systems. They are: (I) the classic submarine fan model with attached lobes, (2) the detached-lobe model, (3) the channel-levee complex without lobes, (4) the delta-fed ramp model, (5) the gully-lobe model, (6) the suprafan lobe model, (7) the depositional lobe model, (8) the fan lobe model, (9) the ponded lobe model, (I0) the nine models based on grain size and sediment source, (11) the four fan models based on tectonic settings, (12) the Jackfork debrite model, (13) the basin-floor fan model, (14) supercritical and subcritical fans, and (15) the three types of fan reservoirs. Each model is unique, and the long-standing belief that submarine fans are composed of turbidites, in particular, of gravelly and sandy high-density turbi- dites, is a myth. This is because there are no empirical data to validate the existence of gravelly and sandy high-density turbidity currents in the modern marine environments. Also, there are no experimental documentation of true turbidity currents that can trans- port gravels and coarse sands in turbulent suspension. Mass-transport processes, which include slides, slumps, and debris flows (but not turbidity currenrs), are the most viable mechanisms for transporting gravels and sands into the deep sea. The prevailing notion that submarine fans develop during periods of sea-level lowstands is also a myth. The geologic reality is that frequent short-term events that last for only a few minutes to several hours or days (e.g., earthquakes, meteorite impacts, tsunamis, tropical cyclones, etc.) are more important in controlling deposition of deep-water sands than sporadic long- term events that last for thousands to millions of years (e.g., lowstand systems tract). Submarine fans are still in a stage of muddled turbidite paradigm because the concept of high-density turbidity currents is incommensurable.展开更多
文摘The use of sequential stratigraphy concept, based on well logs, sedimentology, and biostratigraphy, has shed light on the complex mechanisms controlling sedimentary accumulations. Consequently, identifying these mechanisms allows us to predict the hydrocarbon generation potential of source rocks. In the Ivorian offshore sedimentary basin, certain studies have contributed to understanding and characterizing the petroleum system. However, these previous works did not integrate biostratigraphic data to highlight sedimentary facies. This study, conducted on two wells in the Abidjan margin, is crucial as it helps us comprehend the geometry of fossil sediments in relation to sea level variations. It will also aid in reconstructing the basin-filling history and predicting the distribution of rocks capable of trapping oil, determining lowstand systems tracts (reservoir rocks), transgressive systems tracts, and highstand systems tracts (cap rocks). Lithological analysis revealed predominantly clayey sedimentation with sandy layers. Well log data facilitated the delineation of formation boundaries and highlighted reservoirs consisting of sands, sandstones, limestones, and occasionally intercalated shales. Integrating these analysis results with biostratigraphic interpretations based on foraminifera and palynomorphs revealed that the traversed formations were deposited in a transitional environment ranging from Coniacian to Maastrichtian ages. Applying sequential stratigraphy concept from well logging resolved dating issues encountered in microfossil-poor or microfossil-free zones. The results of the Coniacian-Maastrichtian age sequential subdivision were aligned with the chart.
基金sponsored by the Shell Petroleum Development Company of Nigeria Limited(SPDC).
文摘The utilization of sequence stratigraphic concepts in identifying sands and their spatial continuity in distinct gross depositional settings is key,especially in frontier settings where data paucity is a common challenge.In the Baka field,onshore Niger Delta,detailed reservoir correlation guided by sequence stratigraphic framework analysis showed the distribution of sand and shale units constituting reservoirseal pairs(RSP)correlatable across the field.Within the 3rd-order packages,it is observed that the lowstand systems tract(LST)and highstand systems tract(HST)contain more RSPs and thicker 4th-and 5th-order sands than the transgressive systems tract(TST).In terms of bathymetry,it is noted that irrespective of systems tracts,the RSP Index(RI)decreases from the proximal shallow/inner shelf settings to the more distal outer shelf areas.Amongst all three systems tracts,intervals interpreted as lowstand prograding complexes contain the best developed sands and highest RSP.Sand development within the LSTs has been controlled by a pronounced growth fault regime accompanied by high subsidence and sedimentation rates.This is linked to the basinward migration of the sands during prolonged sea-level fall,creating significant accommodation space for sand deposition.On the other hand,the TSTs known to mark periods of progressive sea-level rise and landward migration of sandy facies,show thinner sands enclosed in much thicker,laterally extensive,and better-preserved deeper marine shales.Interpreted seismic sections indicate intense growth faulting and channelization that influenced the syn-and postdepositional development of the sand packages across the field.The initial timing of deformation of subregional faults in this area coincides with periods of abrupt falls in sea level.This approach could be useful for predicting sand-prone areas in frontier fields as well as possible reservoir-seal parameters required for some aspects of petroleum system analysis and quick-look volume estimation.
文摘The Jurassic in the East Fukang Slope can be divided into six sequences based on sequence stratigraphy by combining logging, core and seismic data. The indicators of sequence boundaries include unconformity, coal seams, change of spore and pollen abundance, scour surfaces and base conglomerate, change of logging curve and sedimentary facies. How to determine the location of the first flooding surfaces and the maximum flooding surface is the key step to divide the systems tract. There occurred a topographic slope break in the East Fukang Slope when the Jurassic was deposited, and therefore we can recognize the location of the first flooding surface and establish the sequence stratigraphic framework with the slope break in the study area. Coal seams regionally distributed are correlatable and isochronic, and record the termination of a depositional event or episode. So, the regional coal seam (more than 60 percent coverage) can be used as the genetic stratigraphic sequence boundary, while locally distributed coal seam (less than 60 percent coverage) can be used as the systems tract boundary. The thick coal seams distributed regionally in the middle of the Badaowan Formation and the lower part of the Xishanyao Formation in the study area act as the sequence boundaries, while the thin and locally distributed coal seam acts as the systems tract boundary, which results in the correlation of the division of sequence stratigraphy of the Jurassic to the whole basin where coal seams are developed extensively.
基金Supported by the Project of "Ktqq-2005-013" from PetroChina, China National Petroleum Corporation(CNPC)
文摘Sequence stratigraphy can be used to predict the oil and gas reservoir bodies and to choose the oil targets. Fan delta and sublacustrine fan systems are developed in the HGZ Area, which is located in front of the Altun Mountain in the west of the Qaidam Basin. On the basis of seismic and well drilling data, the deposits in the area were studied by using sequence stratigraphy and reservoir prediction techniques. Various reservoir prediction techniques used under the constraint of high resolution sequence framework could help to improve the precision of reservoir prediction and to recognize the pinch out line of sand layers, the distribution of isolated sandstone bodies and the types of oil pools. The study of sequence stratigraphy makes reservoir prediction more effective by dividing different scales of sequences and distinguishing the system tracts and parasequence sets, and indicates the internal relationship between oil/gas and sedimentary bodies in different system tracts with evolution in time and space.
基金This study is financially supported by the National Natural Science Foundation of China (No. 49732005-01).
文摘The early Miocene in the Zhu Ⅲ subbasin, the Pearl River Mouth basin, includes two formations-Zhujiang and Zhuhai. There are 8 third-order sequences, S1, S2, S3, S4, S5, S6, S7 and S8 from the bottom of Zhuhai to the top of Zhujiang in thee two formations. There are only one transgressive systems tract (TST) and one highstand systems tract (HST) in each sequence because the whole Zhu Ⅲ subbasin was located updip the shelf break during sequence deposition. The boundaries and maximum flooding surfaces (mfs) are in good response to both gamma and acoustic log curves in the study area. In seismic profile 1249, sediments obviously onlap over the unconformity (SB0, the bottom of Zhuhai Fm), SB1 and SB2, but obviously over only SB2 in seismic profile 1283 since the well- devel-oped faults in the subbasin. The sand bodies with high porosity and permeability for Petroleum migration and accumulation had been reworked by tidal currents before their burial. Hence, the tidal influenced parasequence sets occur both in TST and HST. Through detailed analysis, the sand bodies in TST are more favorable for Petroleum to migrate and accumulate than those in HST.
文摘The basic concepts of sequence stratigraphy can be applied to any cyclic successions regardless of their origin being marias or nonmarine .The storm base can be taken as the base level at the gentle slope side of a faulted basin for distinguishing the systems tractS as no shelf edge is present in nonmarihe fault6d basins. Most of coatinuous rethetions with high amplitude in seismic sections, misunderstood previously as the boundaries of stratigraphic unit, are maximum flooding surface (MFS)in fact. Abundant and diversified microfossils and nannofossils high content of organic carbon,various authigenic minerals such as glauconie,siderite are concentrated nearby these surfaces. It means that the open sea water invaded iato the faulted basins many times in Cretaceous and Paleogene, which make a restricted environment favourable for oil generation. The trend of lake level changes is similar to that of Haq's curve generally, however, the influence of local movements and autostrahgraphic events have to be colandered. The stratal patterns and models of nonmarine sequence are proposed.
文摘According to the latest International Chronostratigraphic Scheme (ICS, 2000), the Permian in the Middle Lower Yangtze region of South China can be divided into three series and nine stages relevant to the traditional six stages of South China. From Assellian to Changxingian of Permian, 44 Ma in age range, the strata are composed of 14 third order sequences, each of which is 3.14 Ma in average age range. There is one third order sequence of Zisongian, equivalent to middle and upper Chuanshan Formation or equal to Asselian and two thirds of Sakmarian. There are two third order sequences, corresponding to Liang shan Formation or Zhenjiang Formation and upper Chuanshan Formation, which are assigned to Longlingian, coinciding with Artinskian and one third of Sakmarian. In addition, three third order sequences, equal to Qixia Formation, are attributed to Chihsian, corresponding to Kubergandian and one third of Roadian. Four third order sequences, comprising Gufeng, Maokou, Yanqiao, Yinping and Wuxue formations, are assigned to Maokouan, equivalent to two thirds of Roadian, Wordian and Capitanian. Two third order sequences, equal to Longtan Formation or Wujiaping Formation, are included in Wuchiapingian. Other two third order sequences, corresponding to Changxing Formation or Dalong Formation, are assigned to Changhsingian. In brief, these above third order sequences can be incorporated into 4 sequences sets.
文摘The seismic sequence stratigraphic analysis revealed four depositional sequences(DS-1,DS-2,DS-3 and DS-4).The accompanying systems tracts were interpreted and mapped in the study area based on the log motifs of the reference well and the spatial distribution of the recognized constrained surfaces:maximum flooding surfaces(MFSs),sequence boundaries(SBs)and transgressive surfaces(TSs)on the seismic data.Depositional systems in the study area comprise lowstand systems tracts(LSTs),transgressive systems tracts(TSTs)and highstand systems tracts(HSTs).The LSTs are represented by coeval facies dominated by deposition basinward of the shelf-edge during maximum regression and are characterized by shallow-water deposition from gravity flows and/or traction processes within the shelf-edge or canyon-head delta.The sediments associated with lowstand systems tracts recognized in the study area are the fluvial channel sands and slope fans(SF).The transgressive sand units were interpreted as shoreface sands deposited in the shelf region during rising sea levels.Highstand systems tracts are characterized by intervals of coarsening and shallowing upwards,with both fluvial and deltaic sands prograding laterally into neritic shales.In the study area,the units are very thick.The highstand and lowstand system tracts exhibit blocky log patterns and are associated with the reservoirs while the transgressive system tracts serve as seals to the reservoirs.The environment of sediments deposition in this area is delta plain,shelf,slope to toe of slope.
文摘When we look back the contributions on submarine fans during the past 65 years (1950 -2015), the empirical data on 21 modern submarine fans and I0 ancient deep-water sys- tems, published by the results of the First COMFAN (Committee on FANs) Meeting (Bouma eta|., 1985a), have remained the single most significant compilation of data on submarine fans. The 1970s were the "heyday" of submarine fan models. In the 21st century, the general focus has shifted from submarine fans to submarine mass movements, internal waves and tides, and contourites. The purpose of this review is to illustrate the complexity of issues surrounding the origin and classification of submarine fans. The principal ele- ments of submarine fans, composed of canyons, channels, and lobes, are discussed using nine modern case studies from the Mediterranean Sea, the Equatorial Atlantic, the Gulf of Mexico, the North Pacific, the NE Indian Ocean (Bay of Bengal), and the East Sea (Korea). The Annot Sandstone (Eocene-Oligocene), exposed at Peira-Cava area, SE France, which served as the type locality for the "Bouma Sequence", was reexamined. The field details are documented in questioning the validity of the model, which was the basis for the turbidite- fan link. The 29 fan-related models that are of conceptual significance, developed during the period 1970-2015, are discussed using modem and ancient systems. They are: (I) the classic submarine fan model with attached lobes, (2) the detached-lobe model, (3) the channel-levee complex without lobes, (4) the delta-fed ramp model, (5) the gully-lobe model, (6) the suprafan lobe model, (7) the depositional lobe model, (8) the fan lobe model, (9) the ponded lobe model, (I0) the nine models based on grain size and sediment source, (11) the four fan models based on tectonic settings, (12) the Jackfork debrite model, (13) the basin-floor fan model, (14) supercritical and subcritical fans, and (15) the three types of fan reservoirs. Each model is unique, and the long-standing belief that submarine fans are composed of turbidites, in particular, of gravelly and sandy high-density turbi- dites, is a myth. This is because there are no empirical data to validate the existence of gravelly and sandy high-density turbidity currents in the modern marine environments. Also, there are no experimental documentation of true turbidity currents that can trans- port gravels and coarse sands in turbulent suspension. Mass-transport processes, which include slides, slumps, and debris flows (but not turbidity currenrs), are the most viable mechanisms for transporting gravels and sands into the deep sea. The prevailing notion that submarine fans develop during periods of sea-level lowstands is also a myth. The geologic reality is that frequent short-term events that last for only a few minutes to several hours or days (e.g., earthquakes, meteorite impacts, tsunamis, tropical cyclones, etc.) are more important in controlling deposition of deep-water sands than sporadic long- term events that last for thousands to millions of years (e.g., lowstand systems tract). Submarine fans are still in a stage of muddled turbidite paradigm because the concept of high-density turbidity currents is incommensurable.