Neural network and genetic algorithms are complementary technologies in the design of adaptive intelligent system. Neural network learns from scratch by adjusting the interconnections betweens layers. Genetic algorith...Neural network and genetic algorithms are complementary technologies in the design of adaptive intelligent system. Neural network learns from scratch by adjusting the interconnections betweens layers. Genetic algorithms are a popular computing framework that uses principals from natural population genetics to evolve solutions to problems. Various forecasting methods have been developed on the basis of neural network, but accuracy has been matter of concern in these forecasts. In neural network methods forecasted values depend to the choose of neural predictor structure, the number of the input, the lag. To remedy to these problem, in this paper, the authors are investing the applicability of an automatic design of a neural predictor realized by real Genetic Algorithms to predict the future value of a time series. The prediction method is tested by using meteorology time series that are daily and weekly mean temperatures in Melbourne, Australia, 1980-1990.展开更多
Global warming,driven by human-induced disruptions to the natural carbon dioxide(CO_(2))cycle,is a pressing concern.To mitigate this,carbon capture and storage has emerged as a key strategy that enables the continued ...Global warming,driven by human-induced disruptions to the natural carbon dioxide(CO_(2))cycle,is a pressing concern.To mitigate this,carbon capture and storage has emerged as a key strategy that enables the continued use of fossil fuels while transitioning to cleaner energy sources.Deep saline aquifers are of particular interest due to their substantial CO_(2) storage potential,often located near fossil fuel reservoirs.In this study,a deep saline aquifer model with a saline water production well was constructed to develop the optimization workflow.Due to the time-consuming nature of each realization of the numerical simulation,we introduce a sur-rogate aquifer model derived from extracted data.The novelty of our work lies in the pioneering of simultaneous optimization using machine learning within an integrated framework.Unlike previous studies,which typically focused on single-parameter optimiza-tion,our research addresses this gap by performing multi-objective optimization for CO_(2) storage and breakthrough time in deep sa-line aquifers using a data-driven model.Our methodology encompasses preprocessing and feature selection,identifying eight pivotal parameters.Evaluation metrics include root mean square error(RMSE),mean absolute percentage error(MAPE)and R^(2).In predicting CO_(2) storage values,RMSE,MAPE and R^(2)in test data were 2.07%,1.52% and 0.99,respectively,while in blind data,they were 2.5%,2.05% and 0.99.For the CO_(2) breakthrough time,RMSE,MAPE and R^(2) in the test data were 2.1%,1.77% and 0.93,while in the blind data they were 2.8%,2.23% and 0.92,respectively.In addressing the substantial computational demands and time-consuming nature of coup-ling a numerical simulator with an optimization algorithm,we have adopted a strategy in which the trained artificial neural network is seamlessly integrated with a multi-objective genetic algorithm.Within this framework,we conducted 5000 comprehensive experi-ments to rigorously validate the development of the Pareto front,highlighting the depth of our computational approach.The findings of the study promise insights into the interplay between CO_(2) breakthrough time and storage in aquifer-based carbon capture and storage processes within an integrated framework based on data-driven coupled multi-objective optimization.展开更多
Water is a vital resource.It supports a multitude of industries,civilizations,and agriculture.However,climatic conditions impact water availability,particularly in desert areas where the temperature is high,and rain i...Water is a vital resource.It supports a multitude of industries,civilizations,and agriculture.However,climatic conditions impact water availability,particularly in desert areas where the temperature is high,and rain is scarce.Therefore,it is crucial to forecast water demand to provide it to sectors either on regular or emergency days.The study aims to develop an accurate model to forecast daily water demand under the impact of climatic conditions.This forecasting is known as a multivariate time series because it uses both the historical data of water demand and climatic conditions to forecast the future.Focusing on the collected data of Jeddah city,Saudi Arabia in the period between 2004 and 2018,we develop a hybrid approach that uses Artificial Neural Networks(ANN)for forecasting and Particle Swarm Optimization algorithm(PSO)for tuning ANNs’hyperparameters.Based on the Root Mean Square Error(RMSE)metric,results show that the(PSO-ANN)is an accurate model for multivariate time series forecasting.Also,the first day is the most difficult day for prediction(highest error rate),while the second day is the easiest to predict(lowest error rate).Finally,correlation analysis shows that the dew point is the most climatic factor affecting water demand.展开更多
<span style="font-family:Verdana;">Several authors have used different classical statistical models to fit the Nigerian Bonny Light crude oil price but the application of machine learning models and Fu...<span style="font-family:Verdana;">Several authors have used different classical statistical models to fit the Nigerian Bonny Light crude oil price but the application of machine learning models and Fuzzy Time Series model on the crude oil price has been grossly understudied. Therefore, in this study, a classical statistical model</span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">—</span><span style="font-family:Verdana;">Autoregressive Integrated Moving Average (ARIMA), two machine learning models</span><span style="font-family:Verdana;">—</span><span style="font-family:Verdana;">Artificial Neural Network (ANN) and Random Forest (RF) and Fuzzy Time Series (FTS) Model were compared in modeling the Nigerian Bonny Light crude oil price data for the periods </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">from</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> January, 2006 to December, 2020. The monthly secondary data were collected from the Nigerian National Petroleum Corporation (NNPC) and Reuters website and divided into train (70%) and test (30%) sets. The train set was used in building the models and the models were validated using the test set. The performance measures used for the comparison include: The modified Diebold-Mariano test, the Root Mean Square Error (RMSE), the Mean Absolute Percentage Error (MAPE) and Nash-Sutcliffe Efficiency (NSE) values. Based on the performance measures, ANN (4, 1, 1) and RF performed better than ARIMA (1, 1, 0) model but FTS model using Chen’s algorithm outperformed every other model. The results recommend the use of FTS model for forecasting future values of the Nigerian Bonny Light Crude oil. However, a hybrid model of ARIMA-ANN or ARIMA-RF should be built and compared with Chen’s algorithm FTS model for the same data set to further verify the power of FTS model using Chen’s algorithm.</span></span></span>展开更多
提出一种基于遗传算法和低阶广义记忆多项式实值神经网络的射频功率放大器数字预失真方法。该方法将遗传算法优化的低阶广义记忆多项式模型与神经网络模型进行级联来增强校正模型与功放失真的匹配程度。它不仅可以提升模型的校正能力,...提出一种基于遗传算法和低阶广义记忆多项式实值神经网络的射频功率放大器数字预失真方法。该方法将遗传算法优化的低阶广义记忆多项式模型与神经网络模型进行级联来增强校正模型与功放失真的匹配程度。它不仅可以提升模型的校正能力,同时可以加快网络的收敛速度。采用60MHz的三载波LTE信号进行实验,通过与实值延时线神经网络模型对比,在收敛速度上有显著提升,同时在邻道功率泄露ACLR指标上有6 d B左右改善。展开更多
文摘Neural network and genetic algorithms are complementary technologies in the design of adaptive intelligent system. Neural network learns from scratch by adjusting the interconnections betweens layers. Genetic algorithms are a popular computing framework that uses principals from natural population genetics to evolve solutions to problems. Various forecasting methods have been developed on the basis of neural network, but accuracy has been matter of concern in these forecasts. In neural network methods forecasted values depend to the choose of neural predictor structure, the number of the input, the lag. To remedy to these problem, in this paper, the authors are investing the applicability of an automatic design of a neural predictor realized by real Genetic Algorithms to predict the future value of a time series. The prediction method is tested by using meteorology time series that are daily and weekly mean temperatures in Melbourne, Australia, 1980-1990.
文摘Global warming,driven by human-induced disruptions to the natural carbon dioxide(CO_(2))cycle,is a pressing concern.To mitigate this,carbon capture and storage has emerged as a key strategy that enables the continued use of fossil fuels while transitioning to cleaner energy sources.Deep saline aquifers are of particular interest due to their substantial CO_(2) storage potential,often located near fossil fuel reservoirs.In this study,a deep saline aquifer model with a saline water production well was constructed to develop the optimization workflow.Due to the time-consuming nature of each realization of the numerical simulation,we introduce a sur-rogate aquifer model derived from extracted data.The novelty of our work lies in the pioneering of simultaneous optimization using machine learning within an integrated framework.Unlike previous studies,which typically focused on single-parameter optimiza-tion,our research addresses this gap by performing multi-objective optimization for CO_(2) storage and breakthrough time in deep sa-line aquifers using a data-driven model.Our methodology encompasses preprocessing and feature selection,identifying eight pivotal parameters.Evaluation metrics include root mean square error(RMSE),mean absolute percentage error(MAPE)and R^(2).In predicting CO_(2) storage values,RMSE,MAPE and R^(2)in test data were 2.07%,1.52% and 0.99,respectively,while in blind data,they were 2.5%,2.05% and 0.99.For the CO_(2) breakthrough time,RMSE,MAPE and R^(2) in the test data were 2.1%,1.77% and 0.93,while in the blind data they were 2.8%,2.23% and 0.92,respectively.In addressing the substantial computational demands and time-consuming nature of coup-ling a numerical simulator with an optimization algorithm,we have adopted a strategy in which the trained artificial neural network is seamlessly integrated with a multi-objective genetic algorithm.Within this framework,we conducted 5000 comprehensive experi-ments to rigorously validate the development of the Pareto front,highlighting the depth of our computational approach.The findings of the study promise insights into the interplay between CO_(2) breakthrough time and storage in aquifer-based carbon capture and storage processes within an integrated framework based on data-driven coupled multi-objective optimization.
文摘Water is a vital resource.It supports a multitude of industries,civilizations,and agriculture.However,climatic conditions impact water availability,particularly in desert areas where the temperature is high,and rain is scarce.Therefore,it is crucial to forecast water demand to provide it to sectors either on regular or emergency days.The study aims to develop an accurate model to forecast daily water demand under the impact of climatic conditions.This forecasting is known as a multivariate time series because it uses both the historical data of water demand and climatic conditions to forecast the future.Focusing on the collected data of Jeddah city,Saudi Arabia in the period between 2004 and 2018,we develop a hybrid approach that uses Artificial Neural Networks(ANN)for forecasting and Particle Swarm Optimization algorithm(PSO)for tuning ANNs’hyperparameters.Based on the Root Mean Square Error(RMSE)metric,results show that the(PSO-ANN)is an accurate model for multivariate time series forecasting.Also,the first day is the most difficult day for prediction(highest error rate),while the second day is the easiest to predict(lowest error rate).Finally,correlation analysis shows that the dew point is the most climatic factor affecting water demand.
文摘<span style="font-family:Verdana;">Several authors have used different classical statistical models to fit the Nigerian Bonny Light crude oil price but the application of machine learning models and Fuzzy Time Series model on the crude oil price has been grossly understudied. Therefore, in this study, a classical statistical model</span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">—</span><span style="font-family:Verdana;">Autoregressive Integrated Moving Average (ARIMA), two machine learning models</span><span style="font-family:Verdana;">—</span><span style="font-family:Verdana;">Artificial Neural Network (ANN) and Random Forest (RF) and Fuzzy Time Series (FTS) Model were compared in modeling the Nigerian Bonny Light crude oil price data for the periods </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">from</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> January, 2006 to December, 2020. The monthly secondary data were collected from the Nigerian National Petroleum Corporation (NNPC) and Reuters website and divided into train (70%) and test (30%) sets. The train set was used in building the models and the models were validated using the test set. The performance measures used for the comparison include: The modified Diebold-Mariano test, the Root Mean Square Error (RMSE), the Mean Absolute Percentage Error (MAPE) and Nash-Sutcliffe Efficiency (NSE) values. Based on the performance measures, ANN (4, 1, 1) and RF performed better than ARIMA (1, 1, 0) model but FTS model using Chen’s algorithm outperformed every other model. The results recommend the use of FTS model for forecasting future values of the Nigerian Bonny Light Crude oil. However, a hybrid model of ARIMA-ANN or ARIMA-RF should be built and compared with Chen’s algorithm FTS model for the same data set to further verify the power of FTS model using Chen’s algorithm.</span></span></span>
文摘提出一种基于遗传算法和低阶广义记忆多项式实值神经网络的射频功率放大器数字预失真方法。该方法将遗传算法优化的低阶广义记忆多项式模型与神经网络模型进行级联来增强校正模型与功放失真的匹配程度。它不仅可以提升模型的校正能力,同时可以加快网络的收敛速度。采用60MHz的三载波LTE信号进行实验,通过与实值延时线神经网络模型对比,在收敛速度上有显著提升,同时在邻道功率泄露ACLR指标上有6 d B左右改善。