In this paper, we give the strong converse inequalities of type B with the new K-functional Kλα(f,t2)w(0 ≤λ≤ 1, 0 < α < 2) on weighted approximation for Sz′asz-Mirakjan operators, which extend the previou...In this paper, we give the strong converse inequalities of type B with the new K-functional Kλα(f,t2)w(0 ≤λ≤ 1, 0 < α < 2) on weighted approximation for Sz′asz-Mirakjan operators, which extend the previous results.展开更多
In this paper we establish direct local and global approximation theorems for Baskakov type operators and Szasz - Mirakjan type operators, respectively.
Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. A.T. Diallo investigated some approximation properties of Szasz-Mirakjan Quasi-Interpolants, but he obtained only ...Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. A.T. Diallo investigated some approximation properties of Szasz-Mirakjan Quasi-Interpolants, but he obtained only direct theorem with Ditzian-Totik modulus wφ^2r (f, t). In this paper, we extend Diallo's result and solve completely the characterization on the rate of approximation by the method of quasi-interpolants to functions f ∈ CB[0, ∞) by making use of the unified modulus wφ^2r(f, t) (0≤λ≤ 1).展开更多
基金the Foundation of Higher School of Ningxia(04M33)the NSF of Ningxia University(ZR0622)
文摘In this paper, we give the strong converse inequalities of type B with the new K-functional Kλα(f,t2)w(0 ≤λ≤ 1, 0 < α < 2) on weighted approximation for Sz′asz-Mirakjan operators, which extend the previous results.
文摘In this paper we establish direct local and global approximation theorems for Baskakov type operators and Szasz - Mirakjan type operators, respectively.
基金the National Natural Science Foundation of China (No.10571040)the Doctoral Foundation of Hebei Normal University (No.L2004B04)
文摘Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. A.T. Diallo investigated some approximation properties of Szasz-Mirakjan Quasi-Interpolants, but he obtained only direct theorem with Ditzian-Totik modulus wφ^2r (f, t). In this paper, we extend Diallo's result and solve completely the characterization on the rate of approximation by the method of quasi-interpolants to functions f ∈ CB[0, ∞) by making use of the unified modulus wφ^2r(f, t) (0≤λ≤ 1).