Let M be a σ-finite von Neumann algebra equipped with a normal faithful state φ, and let A be a maximal subdiagonal algebra of M. We proved a Szeg type factorization theorem for the Haagerup noncommutative H;-spaces.
We define new integral operators on the Haydy space similar to Szeg<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span><span style...We define new integral operators on the Haydy space similar to Szeg<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span><span style="font-family:Verdana;"> projection. We show that these operators map from </span><i><span style="font-family:Verdana;">H<sup><i style="white-space:normal;"><span style="font-family:Verdana;">p</span></i></sup></span></i><i><span style="font-family:Verdana;"> </span></i><span style="font-family:Verdana;">to </span><i><span style="font-family:Verdana;">H</span></i><span style="font-family:Verdana;"><sup><span style="white-space:normal;font-family:Verdana;">2 </span></sup></span><span style="font-family:Verdana;">for some 1 </span><i><span style="font-family:Verdana;">≤ </span></i><i><span style="font-family:Verdana;">p < </span></i><span style="font-family:Verdana;">2, where the range of </span><i><span style="font-family:Verdana;">p </span></i><span style="font-family:CMR10;"><span style="font-family:Verdana;">is depending on a growth condition. To prove that, we generalize the Hausdorff-Young Theorem to multi-dimensional case.</span></span>展开更多
This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)i...This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)is the n-th term of the Gram-Schmidt orthogonalization of the Szego kernels k_(a1),k_(an),or their multiple forms.Three schemes are presented.The first two schemes each directly obtain all the function values f(z).In the first one we use Nevanlinna’s inner and outer function factorization which merely requires the 1-intensity measurements equivalent to know the modulus|f(z)|.In the second scheme we do not use deep complex analysis,but require some 2-and 3-intensity measurements.The third scheme,as an application of AFD,gives sparse representation of f(z)converging quickly in the energy sense,depending on consecutively selected maximal n-intensity measurements|<f,E_(a1…an)>|.展开更多
In this paper,the mixed Pólya-Szegöprinciple is established.By the mixed Pólya-Szegöprinciple,the mixed Morrey-Sobolev inequality and some new analytic inequalities are obtained.
文摘Let M be a σ-finite von Neumann algebra equipped with a normal faithful state φ, and let A be a maximal subdiagonal algebra of M. We proved a Szeg type factorization theorem for the Haagerup noncommutative H;-spaces.
文摘We define new integral operators on the Haydy space similar to Szeg<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span><span style="font-family:Verdana;"> projection. We show that these operators map from </span><i><span style="font-family:Verdana;">H<sup><i style="white-space:normal;"><span style="font-family:Verdana;">p</span></i></sup></span></i><i><span style="font-family:Verdana;"> </span></i><span style="font-family:Verdana;">to </span><i><span style="font-family:Verdana;">H</span></i><span style="font-family:Verdana;"><sup><span style="white-space:normal;font-family:Verdana;">2 </span></sup></span><span style="font-family:Verdana;">for some 1 </span><i><span style="font-family:Verdana;">≤ </span></i><i><span style="font-family:Verdana;">p < </span></i><span style="font-family:Verdana;">2, where the range of </span><i><span style="font-family:Verdana;">p </span></i><span style="font-family:CMR10;"><span style="font-family:Verdana;">is depending on a growth condition. To prove that, we generalize the Hausdorff-Young Theorem to multi-dimensional case.</span></span>
基金The Science and Technology Development Fund,Macao SAR(File no.0123/2018/A3)supported by the Natural Science Foundation of China(61961003,61561006,11501132)+2 种基金Natural Science Foundation of Guangxi(2016GXNSFAA380049)the talent project of the Education Department of the Guangxi Government for one thousand Young-Middle-Aged backbone teachersthe Natural Science Foundation of China(12071035)。
文摘This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)is the n-th term of the Gram-Schmidt orthogonalization of the Szego kernels k_(a1),k_(an),or their multiple forms.Three schemes are presented.The first two schemes each directly obtain all the function values f(z).In the first one we use Nevanlinna’s inner and outer function factorization which merely requires the 1-intensity measurements equivalent to know the modulus|f(z)|.In the second scheme we do not use deep complex analysis,but require some 2-and 3-intensity measurements.The third scheme,as an application of AFD,gives sparse representation of f(z)converging quickly in the energy sense,depending on consecutively selected maximal n-intensity measurements|<f,E_(a1…an)>|.
基金supported in part by NSFC(Grant No.12001291)supported in part by NSFC(Grant No.12071318)。
文摘In this paper,the mixed Pólya-Szegöprinciple is established.By the mixed Pólya-Szegöprinciple,the mixed Morrey-Sobolev inequality and some new analytic inequalities are obtained.