Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripher...Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripheral nerve allografts undergo immunological rejection by the host immune system.In contrast,peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks,reduced immune responses,and many axons do not undergo Wallerian degeneration.The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study.We hypothesized that polyethylene glycol might have some immune-protective effects,but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery.We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion.Ablation-type sciatic nerve injuries in outbred Sprague–Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts,but peripheral nerve allografts were loose-sutured(loose-sutured polyethylene glycol)with an intentional gap of 1–2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons.Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts,animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively.Other morphological signs of rejection,such as collapsed Schwann cell basal lamina tubes,were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively.Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts.While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts,loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively.MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts,but MHCII expression was modestly lower compared to negative control at 21 days postoperatively.We conclude that,while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts,successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts,and produce recovery of sensory/motor functions and voluntary behaviors.Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries.展开更多
Objective This study aimed to investigate the changes of follicular helper T(TFH)and follicular regulatory T(TFR)cell subpopulations in patients with non-small cell lung cancer(NSCLC)and their significance.Methods Per...Objective This study aimed to investigate the changes of follicular helper T(TFH)and follicular regulatory T(TFR)cell subpopulations in patients with non-small cell lung cancer(NSCLC)and their significance.Methods Peripheral blood was collected from 58 NSCLC patients at different stages and 38 healthy controls.Flow cytometry was used to detect TFH cell subpopulation based on programmed death 1(PD-1)and inducible co-stimulator(ICOS),and TFR cell subpopulation based on cluster determinant 45RA(CD45RA)and forkhead box protein P3(FoxP3).The levels of interleukin-10(IL-10),interleukin-17a(IL-17a),interleukin-21(IL-21),and transforming growth factor-β(TGF-β)in the plasma were measured,and changes in circulating B cell subsets and plasma IgG levels were also analyzed.The correlation between serum cytokeratin fragment antigen 21-1(CYFRA 21-1)levels and TFH,TFR,or B cell subpopulations was further explored.Results The TFR/TFH ratio increased significantly in NSCLC patients.The CD45RA^(+)FoxP3^(int) TFR subsets were increased,with their proportions increasing in stages Ⅱ to Ⅲ and decreasing in stage IV.PD-1^(+)ICOS+TFH cells showed a downward trend with increasing stages.Plasma IL-21 and TGF-β concentrations were increased in NSCLC patients compared with healthy controls.Plasmablasts,plasma IgG levels,and CD45RA^(+)FoxP3^(int) TFR cells showed similar trends.TFH numbers and plasmablasts were positively correlated with CYFRA 21-1 in stages Ⅰ-Ⅲ and negatively correlated with CYFRA 21-1 in stage IV.Conclusion Circulating TFH and TFR cell subpopulations and plasmablasts dynamically change in different stages of NSCLC,which is associated with serum CYFRA 21-1 levels and reflects disease progression.展开更多
Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ...Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.展开更多
Food allergy is a significant public health concern globally.Certain probiotics have been found to enhance food allergy by regulating immune-microbe interactions in animal models and patients.However,the effects of Bi...Food allergy is a significant public health concern globally.Certain probiotics have been found to enhance food allergy by regulating immune-microbe interactions in animal models and patients.However,the effects of Bifidobacterium lactis Probio-M8 on food allergy have not been thoroughly investigated.The present study examined the anti-allergic properties of Probio-M8,particularly in relation to immune response and gut microbiota composition.Results demonstrate that oral administration of Probio-M8 effectively mitigated the allergy symptoms triggered by ovalbumin(OVA)by ameliorating the morphological damage in the jejunum,reducing OVA-specific IgE and histamine levels in the serum,and suppressing Th2 cytokines(interleukin(IL)4 and IL-13)while increasing Th1 cytokines(interferon(IFN)γ)and regulatory T(Treg)cytokines(IL-10 and transforming growth factor(TGF)β1)in the culture supernatants of splenic cells.Furthermore,Probio-M8 effectively altered the diversity and composition of gut microbiota,particularly the relative abundances of Akkermansia_muciniphila in OVA-induced mice.Compared to the OVA group,the Probio-M8 group showed a decrease in the relative abundance of Akkermansia_muciniphila.In conclusion,Probio-M8 demonstrates the potential to alleviate food allergy by regulating the Th1/Th2 response and modulating gut microbiota,thereby offering a novel therapeutic strategy for patients with food allergy.展开更多
Chronic viral hepatitis causes an increased risk of progressive liver disease and hepatocellular carcinoma.On the wave of the World Health Organization’s goal to reduce new cases and deaths from hepatitis B and C by ...Chronic viral hepatitis causes an increased risk of progressive liver disease and hepatocellular carcinoma.On the wave of the World Health Organization’s goal to reduce new cases and deaths from hepatitis B and C by 2030,there is an increasing call to expand the indications for treatment of chronic hepatitis B.Currently,the main goal of treatment is to achieve a functional cure due to the inability of current drugs to completely eradicate the virus.There are still many discrepancies between available guidelines in terms of eligibility for treatment as well as an uncertainty about the appropriate treatment duration.This editorial addresses key questions about the topic and whether indications for treatment should be expanded.展开更多
Immune checkpoint blockade(ICB)therapeutics are highly effective in cancer immunotherapy,but gastrointestinal toxicity limited the application.Intestinal microbiota plays a crucial role in ICB-associated colitis.2’-F...Immune checkpoint blockade(ICB)therapeutics are highly effective in cancer immunotherapy,but gastrointestinal toxicity limited the application.Intestinal microbiota plays a crucial role in ICB-associated colitis.2’-Fucosyllactose(2’FL)is most abundance prebiotic in human milk that can reshape gut microbiota and exert immune regulatory effect.The study aimed to determine the effects of 2’FL on ICB-associated colitis and to uncover the mediating mechanism.ICB-associated colitis was induced by the ipilimumab and dextran sulfate sodium.Oral administration of 2’FL(0.6 g/(kg∙day))ameliorated ICB-induced colitis by enhancing regulatory T cells(Treg)and the M2/M1 ratio of macrophages in colon.2’FL treatment also increased the expression of tight junction proteins(zonula occludens-1(ZO-1)and mucin 2(MUC2))and antioxidant stress indicators(superoxide dismutase(SOD)and catalase(CAT)).In addition,administration of 2’FL increased the abundance of Bifidobacterium and Lactobacillus,and elevated the levels of microbial metabolites,such as indole-3-lactic acid(ILA),which activated the aryl hydrocarbon receptor ligands(AHR)pathway.The protective effect of 2’FL was abolished upon depletion of gut microbiota,and ILA treatment partially simulated the protective effect of 2’FL.Notably,2’FL did not exhibit inhibition of antitumor immunity.These findings suggest that 2’FL could serve as a potential protective strategy for ICB-associated colitis by modulating the intestinal microbiota and bacterial metabolites.展开更多
This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this g...This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings.展开更多
A segmented basis set of quadruple zeta valence quality plus polarization functions(QZP)for H through Xe was developed to be used in conjunction with the ZORA Hamiltonian.This set was augmented with diffuse functions ...A segmented basis set of quadruple zeta valence quality plus polarization functions(QZP)for H through Xe was developed to be used in conjunction with the ZORA Hamiltonian.This set was augmented with diffuse functions to describe electrons farther away from the nuclei adequately.Using the ZORA-CCSD(T)/QZP-ZORA theoretical model,atomic ionization energies and bond lengths,harmonic vibrational frequencies,and atomization energies of some molecules were calculated.The addition of core-valence corrections has been shown to improve the agreement between theoretical and experimental results for molecular properties.For atomization energies,a similar observation emerges when considering spin-orbit couplings.With the augmented QZP-ZORA set,static mean dipole polarizabilities of a set of atoms were calculated and compared with previously published recommended and experimental values.Performance evaluations of the ZORA and Douglas–Kroll–Hess Hamiltonians were made for each property studied.展开更多
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first i...The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.展开更多
Background:The type 2 diabetes mellitus(T2DM)pharmacodynamic study of various parts of Schisandra sphenanthera was conducted in the previous stage,and it was found that dichloromethane extracted part(SDP)had a signifi...Background:The type 2 diabetes mellitus(T2DM)pharmacodynamic study of various parts of Schisandra sphenanthera was conducted in the previous stage,and it was found that dichloromethane extracted part(SDP)had a significant hypoglycemic effect.Therefore,the components of SDP were analyzed,and the specific mechanism of its anti-T2DM was explored.Methods:We used a high-fat,high-sugar diet in combination with streptozotocin to induce a T2DM rat model,and the model rats were divided into two groups according to body weight and blood glucose.Triglyceride,oral glucose tolerance test,fasting blood glucose,low density lipoprotein cholesterol,superoxide dismutase,insulin,glycated hemoglobin,total cholesterol,nonesterified free fatty acids,alanine aminotransferase,high-density lipoprotein cholesterol,aspartate aminotransferase,malondialdehyde,and glutathione peroxidase were measured,organ indices were calculated,and pathological sections of pancreas and liver were observed.The 16S rRNA V3–V4 region of intestinal flora was sequenced to explore the effect of SDP on biochemical indicators and intestinal flora.Based on the above indicators,the anti-T2DM mechanism of SDP in Schisandra sphenanthera was analyzed.Results:After six weeks of administration,the biochemical indices of diabetic rats were diminished compared to the control group.And SDP could significantly increase the gut microbialα-diversity index,resulting in significant changes in the flora of T2DM rats,with increased richness and diversity,reduced harmful flora,and significantly back-regulated the levels of acetic acid,propionic acid,and butyric acid.Conclusion:SDP can improve the symptoms associated with elevated blood glucose,dyslipidemia,elevated fasting insulin levels,and damaged glucose tolerance in rats.SDP against T2DM may be through the control of intestinal flora to normalize and exert anti-diabetic effect;its main active components may be lignans and terpenoids.展开更多
The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn and Mg-6Zn-1Mn-4Sn-0.5Y alloys under extrusion and T6 aging conditions were investigated by optical microscopy(OM), X-ray diffraction(XRD), scanning ...The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn and Mg-6Zn-1Mn-4Sn-0.5Y alloys under extrusion and T6 aging conditions were investigated by optical microscopy(OM), X-ray diffraction(XRD), scanning electron microscopy(SEM) and tensile test. The results show that Y element refines the grains and improves the comprehensive mechanical properties of ZMT614-0.5Y both in as-extruded and T6 states. The phase compositions of Mg-6Zn-1Mn-4Sn-0.5Y are α-Mg, Mg Zn2, Mn, Mg2 Sn and Mg Sn Y phases. After T6 treatment, the ultimate tensile strength(UTS) and yield strength(YS) increase while the elongation decreases severely. For both of these alloys, the theoretical results combined with the experimental values demonstrate that the grain boundary strengthening and solid solution strengthening play an important role in enhancing the YS in the as-extruded state, while the precipitation strengthening is the key factor for the enhancement of YS in the T6 state.展开更多
The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy...The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy (TEM), tensile tests and ballistic resistance test. After T916 treatment, the yield strength, tensile strength and elongation rate of 2519A aluminum alloy reach 501 MPa, 540 MPa and 14%, respectively. And the ballistic limit velocity of 2519A-T916 alloy (30 mm in thickness) is 715 rn/s. The microstructure varies near the sidewalls of crater. The interrupted ageing contributes to these excellent properties of the alloy. During T916 process, the precipitation of Guinier Preston (GP) zone is finer and denser during the interrupted ageing, thus resulting in well precipitated strengthening phase.展开更多
基金supported by grants from the Lone Star Paralysis Foundation,NIH R01NS081063Department of Defense award W81XWH-19-2-0054 to GDB+2 种基金supported by University of Wyoming Startup funds,Department of Defense grant W81XWH-17-1-0402the University of Wyoming Sensory Biology COBRE under National Institutes of Health(NIH)award number 5P20GM121310-02the National Institute of General Medical Sciences of the NIH under award number P20GM103432 to JSB。
文摘Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripheral nerve allografts undergo immunological rejection by the host immune system.In contrast,peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks,reduced immune responses,and many axons do not undergo Wallerian degeneration.The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study.We hypothesized that polyethylene glycol might have some immune-protective effects,but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery.We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion.Ablation-type sciatic nerve injuries in outbred Sprague–Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts,but peripheral nerve allografts were loose-sutured(loose-sutured polyethylene glycol)with an intentional gap of 1–2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons.Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts,animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively.Other morphological signs of rejection,such as collapsed Schwann cell basal lamina tubes,were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively.Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts.While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts,loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively.MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts,but MHCII expression was modestly lower compared to negative control at 21 days postoperatively.We conclude that,while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts,successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts,and produce recovery of sensory/motor functions and voluntary behaviors.Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries.
基金supported by grants from the National Natural Science Foundation of China(No.82271755,No.81871230)Peking University People's Hospital Scientific Research Development Funds(RZ 2022-06).
文摘Objective This study aimed to investigate the changes of follicular helper T(TFH)and follicular regulatory T(TFR)cell subpopulations in patients with non-small cell lung cancer(NSCLC)and their significance.Methods Peripheral blood was collected from 58 NSCLC patients at different stages and 38 healthy controls.Flow cytometry was used to detect TFH cell subpopulation based on programmed death 1(PD-1)and inducible co-stimulator(ICOS),and TFR cell subpopulation based on cluster determinant 45RA(CD45RA)and forkhead box protein P3(FoxP3).The levels of interleukin-10(IL-10),interleukin-17a(IL-17a),interleukin-21(IL-21),and transforming growth factor-β(TGF-β)in the plasma were measured,and changes in circulating B cell subsets and plasma IgG levels were also analyzed.The correlation between serum cytokeratin fragment antigen 21-1(CYFRA 21-1)levels and TFH,TFR,or B cell subpopulations was further explored.Results The TFR/TFH ratio increased significantly in NSCLC patients.The CD45RA^(+)FoxP3^(int) TFR subsets were increased,with their proportions increasing in stages Ⅱ to Ⅲ and decreasing in stage IV.PD-1^(+)ICOS+TFH cells showed a downward trend with increasing stages.Plasma IL-21 and TGF-β concentrations were increased in NSCLC patients compared with healthy controls.Plasmablasts,plasma IgG levels,and CD45RA^(+)FoxP3^(int) TFR cells showed similar trends.TFH numbers and plasmablasts were positively correlated with CYFRA 21-1 in stages Ⅰ-Ⅲ and negatively correlated with CYFRA 21-1 in stage IV.Conclusion Circulating TFH and TFR cell subpopulations and plasmablasts dynamically change in different stages of NSCLC,which is associated with serum CYFRA 21-1 levels and reflects disease progression.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1605000)National Natural Science Foundation of China(Grant No.31871806)the Beijing Livestock Industry Innovation Team(BAIC05-2023)。
文摘Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.
基金the financial supporting by the National Key Research and Development Program of China(2022YFF1102400)National Natural Science Foundation of China(32102093)the Natural Science Foundation of Jiangsu Province(BK20210226)。
文摘Food allergy is a significant public health concern globally.Certain probiotics have been found to enhance food allergy by regulating immune-microbe interactions in animal models and patients.However,the effects of Bifidobacterium lactis Probio-M8 on food allergy have not been thoroughly investigated.The present study examined the anti-allergic properties of Probio-M8,particularly in relation to immune response and gut microbiota composition.Results demonstrate that oral administration of Probio-M8 effectively mitigated the allergy symptoms triggered by ovalbumin(OVA)by ameliorating the morphological damage in the jejunum,reducing OVA-specific IgE and histamine levels in the serum,and suppressing Th2 cytokines(interleukin(IL)4 and IL-13)while increasing Th1 cytokines(interferon(IFN)γ)and regulatory T(Treg)cytokines(IL-10 and transforming growth factor(TGF)β1)in the culture supernatants of splenic cells.Furthermore,Probio-M8 effectively altered the diversity and composition of gut microbiota,particularly the relative abundances of Akkermansia_muciniphila in OVA-induced mice.Compared to the OVA group,the Probio-M8 group showed a decrease in the relative abundance of Akkermansia_muciniphila.In conclusion,Probio-M8 demonstrates the potential to alleviate food allergy by regulating the Th1/Th2 response and modulating gut microbiota,thereby offering a novel therapeutic strategy for patients with food allergy.
文摘Chronic viral hepatitis causes an increased risk of progressive liver disease and hepatocellular carcinoma.On the wave of the World Health Organization’s goal to reduce new cases and deaths from hepatitis B and C by 2030,there is an increasing call to expand the indications for treatment of chronic hepatitis B.Currently,the main goal of treatment is to achieve a functional cure due to the inability of current drugs to completely eradicate the virus.There are still many discrepancies between available guidelines in terms of eligibility for treatment as well as an uncertainty about the appropriate treatment duration.This editorial addresses key questions about the topic and whether indications for treatment should be expanded.
基金supported by the National Natural Science Foundation of China(32122067)the National Natural Science Foundation of China(32021005)Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province.
文摘Immune checkpoint blockade(ICB)therapeutics are highly effective in cancer immunotherapy,but gastrointestinal toxicity limited the application.Intestinal microbiota plays a crucial role in ICB-associated colitis.2’-Fucosyllactose(2’FL)is most abundance prebiotic in human milk that can reshape gut microbiota and exert immune regulatory effect.The study aimed to determine the effects of 2’FL on ICB-associated colitis and to uncover the mediating mechanism.ICB-associated colitis was induced by the ipilimumab and dextran sulfate sodium.Oral administration of 2’FL(0.6 g/(kg∙day))ameliorated ICB-induced colitis by enhancing regulatory T cells(Treg)and the M2/M1 ratio of macrophages in colon.2’FL treatment also increased the expression of tight junction proteins(zonula occludens-1(ZO-1)and mucin 2(MUC2))and antioxidant stress indicators(superoxide dismutase(SOD)and catalase(CAT)).In addition,administration of 2’FL increased the abundance of Bifidobacterium and Lactobacillus,and elevated the levels of microbial metabolites,such as indole-3-lactic acid(ILA),which activated the aryl hydrocarbon receptor ligands(AHR)pathway.The protective effect of 2’FL was abolished upon depletion of gut microbiota,and ILA treatment partially simulated the protective effect of 2’FL.Notably,2’FL did not exhibit inhibition of antitumor immunity.These findings suggest that 2’FL could serve as a potential protective strategy for ICB-associated colitis by modulating the intestinal microbiota and bacterial metabolites.
基金funded by the National Natural Science Foundation of China (Grant No. 11975145)
文摘This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings.
基金the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico and Coordenacao de Aperfeic oamento de Pessoal de Nível Superior (Brazilian Agencies)。
文摘A segmented basis set of quadruple zeta valence quality plus polarization functions(QZP)for H through Xe was developed to be used in conjunction with the ZORA Hamiltonian.This set was augmented with diffuse functions to describe electrons farther away from the nuclei adequately.Using the ZORA-CCSD(T)/QZP-ZORA theoretical model,atomic ionization energies and bond lengths,harmonic vibrational frequencies,and atomization energies of some molecules were calculated.The addition of core-valence corrections has been shown to improve the agreement between theoretical and experimental results for molecular properties.For atomization energies,a similar observation emerges when considering spin-orbit couplings.With the augmented QZP-ZORA set,static mean dipole polarizabilities of a set of atoms were calculated and compared with previously published recommended and experimental values.Performance evaluations of the ZORA and Douglas–Kroll–Hess Hamiltonians were made for each property studied.
基金supported by the National Natural Science Foundation of China,Nos.82104560(to CL),U21A20400(to QW)the Natural Science Foundation of Beijing,No.7232279(to XW)the Project of Beijing University of Chinese Medicine,No.2022-JYB-JBZR-004(to XW)。
文摘The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
基金supported by the Fundamental Research Foundation of the National Natural Science Foundation of China(No.82174111)the State Administration of Traditional Chinese Medicine and the Sci-Tech Innovation Talent System Construction Program of Shaanxi University of Chinese Medicine(No.2023-CXTD-05).
文摘Background:The type 2 diabetes mellitus(T2DM)pharmacodynamic study of various parts of Schisandra sphenanthera was conducted in the previous stage,and it was found that dichloromethane extracted part(SDP)had a significant hypoglycemic effect.Therefore,the components of SDP were analyzed,and the specific mechanism of its anti-T2DM was explored.Methods:We used a high-fat,high-sugar diet in combination with streptozotocin to induce a T2DM rat model,and the model rats were divided into two groups according to body weight and blood glucose.Triglyceride,oral glucose tolerance test,fasting blood glucose,low density lipoprotein cholesterol,superoxide dismutase,insulin,glycated hemoglobin,total cholesterol,nonesterified free fatty acids,alanine aminotransferase,high-density lipoprotein cholesterol,aspartate aminotransferase,malondialdehyde,and glutathione peroxidase were measured,organ indices were calculated,and pathological sections of pancreas and liver were observed.The 16S rRNA V3–V4 region of intestinal flora was sequenced to explore the effect of SDP on biochemical indicators and intestinal flora.Based on the above indicators,the anti-T2DM mechanism of SDP in Schisandra sphenanthera was analyzed.Results:After six weeks of administration,the biochemical indices of diabetic rats were diminished compared to the control group.And SDP could significantly increase the gut microbialα-diversity index,resulting in significant changes in the flora of T2DM rats,with increased richness and diversity,reduced harmful flora,and significantly back-regulated the levels of acetic acid,propionic acid,and butyric acid.Conclusion:SDP can improve the symptoms associated with elevated blood glucose,dyslipidemia,elevated fasting insulin levels,and damaged glucose tolerance in rats.SDP against T2DM may be through the control of intestinal flora to normalize and exert anti-diabetic effect;its main active components may be lignans and terpenoids.
基金Project(2013CB632200)supported by National Basic Research Program of ChinaProject(2010DFR50010)supported by International Scientific and Technological Cooperation Program of Ministry of Science and Technology of ChinaProject supported by Sharing Fund of Chongqing University’s Large-scale Equipment,China
文摘The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn and Mg-6Zn-1Mn-4Sn-0.5Y alloys under extrusion and T6 aging conditions were investigated by optical microscopy(OM), X-ray diffraction(XRD), scanning electron microscopy(SEM) and tensile test. The results show that Y element refines the grains and improves the comprehensive mechanical properties of ZMT614-0.5Y both in as-extruded and T6 states. The phase compositions of Mg-6Zn-1Mn-4Sn-0.5Y are α-Mg, Mg Zn2, Mn, Mg2 Sn and Mg Sn Y phases. After T6 treatment, the ultimate tensile strength(UTS) and yield strength(YS) increase while the elongation decreases severely. For both of these alloys, the theoretical results combined with the experimental values demonstrate that the grain boundary strengthening and solid solution strengthening play an important role in enhancing the YS in the as-extruded state, while the precipitation strengthening is the key factor for the enhancement of YS in the T6 state.
基金Project(2012CB619501)supported by the National Basic Research Program of China
文摘The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy (TEM), tensile tests and ballistic resistance test. After T916 treatment, the yield strength, tensile strength and elongation rate of 2519A aluminum alloy reach 501 MPa, 540 MPa and 14%, respectively. And the ballistic limit velocity of 2519A-T916 alloy (30 mm in thickness) is 715 rn/s. The microstructure varies near the sidewalls of crater. The interrupted ageing contributes to these excellent properties of the alloy. During T916 process, the precipitation of Guinier Preston (GP) zone is finer and denser during the interrupted ageing, thus resulting in well precipitated strengthening phase.