This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is ...This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is adopted for modeling of nonlinear system. The systematic design procedure for the fuzzy robust controller based on linear matrix inequality (LMI) is given. Some sufficient conditions are derived for the existence of fuzzy H ∞ state feedback controllers such that the closed loop system is asymptotically stable and the effect of the disturbance input on controlled output is reduced to a prescribed level. An example is given to demonstrate the effectiveness of the proposed method.展开更多
A new approach is provided to estimate the state of arbitrarily maneuvering target. In this approach a fuzzy compensator is used to tackle the uncertainty which results from the targets arbitrarily maneuvering. To des...A new approach is provided to estimate the state of arbitrarily maneuvering target. In this approach a fuzzy compensator is used to tackle the uncertainty which results from the targets arbitrarily maneuvering. To design the observer of the nonlinear system, the fuzzy T S model and the receding horizon control strategy are employed. Besides, the design depends on tracking the output error of the model. Compared with the technique used in other articles, the errors between the first estimated value and the true state value of the estimated variable are not strictly required. Numerical simulating results show that the proposed approach can estimate the states of the random maneuvering targets on line so as to obtain the exact tracking of the target.展开更多
Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) ...Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) is proposed. The controller consists of a fuzzy baseline controller and an adaptive increment, and the main highlight is that the fuzzy baseline controller and adaptation laws are both based on the fuzzy multiple Lyapunov function approach, which helps to reduce the conservatism for the large envelope and guarantees satisfactory tracking performances with strong robustness simultaneously within the whole envelope. The constraint condition of the fuzzy baseline controller is provided in the form of linear matrix inequality(LMI), and it specifies the satisfactory tracking performances in the absence of uncertainties. The adaptive increment ensures the uniformly ultimately bounded(UUB) predication errors to recover satisfactory responses in the presence of uncertainties. Simulation results show that the proposed controller helps to achieve high-accuracy tracking of airspeed and altitude desirable commands with strong robustness to uncertainties throughout the entire flight envelope.展开更多
文摘This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is adopted for modeling of nonlinear system. The systematic design procedure for the fuzzy robust controller based on linear matrix inequality (LMI) is given. Some sufficient conditions are derived for the existence of fuzzy H ∞ state feedback controllers such that the closed loop system is asymptotically stable and the effect of the disturbance input on controlled output is reduced to a prescribed level. An example is given to demonstrate the effectiveness of the proposed method.
文摘A new approach is provided to estimate the state of arbitrarily maneuvering target. In this approach a fuzzy compensator is used to tackle the uncertainty which results from the targets arbitrarily maneuvering. To design the observer of the nonlinear system, the fuzzy T S model and the receding horizon control strategy are employed. Besides, the design depends on tracking the output error of the model. Compared with the technique used in other articles, the errors between the first estimated value and the true state value of the estimated variable are not strictly required. Numerical simulating results show that the proposed approach can estimate the states of the random maneuvering targets on line so as to obtain the exact tracking of the target.
文摘Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) is proposed. The controller consists of a fuzzy baseline controller and an adaptive increment, and the main highlight is that the fuzzy baseline controller and adaptation laws are both based on the fuzzy multiple Lyapunov function approach, which helps to reduce the conservatism for the large envelope and guarantees satisfactory tracking performances with strong robustness simultaneously within the whole envelope. The constraint condition of the fuzzy baseline controller is provided in the form of linear matrix inequality(LMI), and it specifies the satisfactory tracking performances in the absence of uncertainties. The adaptive increment ensures the uniformly ultimately bounded(UUB) predication errors to recover satisfactory responses in the presence of uncertainties. Simulation results show that the proposed controller helps to achieve high-accuracy tracking of airspeed and altitude desirable commands with strong robustness to uncertainties throughout the entire flight envelope.