Radio frequency identification(RFID) is a ubiquitous identification technology nowadays. An on-chip high-performance transmit/receive(T/R) switch is designed and simulated in 0.13-μm CMOS technology for reader-less R...Radio frequency identification(RFID) is a ubiquitous identification technology nowadays. An on-chip high-performance transmit/receive(T/R) switch is designed and simulated in 0.13-μm CMOS technology for reader-less RFID tag. The switch utilizes only the transistor width and length(W/L) optimization, proper gate bias resistor and resistive body floating technique and therefore,exhibits 1 d B insertion loss, 31.5 d B isolation and 29.2 d Bm 1-d B compression point(P1d B). Moreover, the switch dissipates only786.7 n W power for 1.8/0 V control voltages and is capable of switching in 794 fs. Above all, as there is no inductor or capacitor used in the circuit, the size of the switch is 0.00208 mm2 only. This switch will be appropriate for reader-less RFID tag transceiver front-end as well as other wireless transceivers operated at 2.4 GHz band.展开更多
Grinding-induced tm phase transformation and the resultant texture in ceria-yttria-doped tetragonal zirconia polycrystals with varied tetragonality have been studied by XRD. It is observed that the reversible tm phase...Grinding-induced tm phase transformation and the resultant texture in ceria-yttria-doped tetragonal zirconia polycrystals with varied tetragonality have been studied by XRD. It is observed that the reversible tm phase transformation occurs during grinding and the intensity ratio of I(002)t/I(200)t increases with the transformability. The author proposes that the texture induced by grinding at low temperatures is due to the tetragonal variant reorientation via cyclic,reversible tm phase transformation, termed 'transformational domain switching', instead of the ferroelastic one展开更多
基金supported by the research grant Economic Transformation Programme (ETP-2013-037) from Universiti Kebangsaan Malaysia and the Ministry of Science, Technology and Innovation (MOSTI) respectively
文摘Radio frequency identification(RFID) is a ubiquitous identification technology nowadays. An on-chip high-performance transmit/receive(T/R) switch is designed and simulated in 0.13-μm CMOS technology for reader-less RFID tag. The switch utilizes only the transistor width and length(W/L) optimization, proper gate bias resistor and resistive body floating technique and therefore,exhibits 1 d B insertion loss, 31.5 d B isolation and 29.2 d Bm 1-d B compression point(P1d B). Moreover, the switch dissipates only786.7 n W power for 1.8/0 V control voltages and is capable of switching in 794 fs. Above all, as there is no inductor or capacitor used in the circuit, the size of the switch is 0.00208 mm2 only. This switch will be appropriate for reader-less RFID tag transceiver front-end as well as other wireless transceivers operated at 2.4 GHz band.
文摘Grinding-induced tm phase transformation and the resultant texture in ceria-yttria-doped tetragonal zirconia polycrystals with varied tetragonality have been studied by XRD. It is observed that the reversible tm phase transformation occurs during grinding and the intensity ratio of I(002)t/I(200)t increases with the transformability. The author proposes that the texture induced by grinding at low temperatures is due to the tetragonal variant reorientation via cyclic,reversible tm phase transformation, termed 'transformational domain switching', instead of the ferroelastic one