针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进IN...针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。展开更多
为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IG...为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IGWO-BP)预测模型,在晴朗天气下进行试验,并采用该模型对系统电功率以及蓄热水箱内水温进行预测。结果显示,晴朗日系统的电效率8.7%~12.2%、热效率51.7%;预测结果与BP神经网络预测模型、基于粒子群优化的BP神经网络(back propagation neural network based on particle swarm optimization,PSO-BP)预测模型和卷积神经网络(convolutional neural network,CNN)预测模型预测结果进行比较,结果显示IGWO-BP预测模型电效率预测模型的绝对百分比误差(mean absolute percentage error,MAPE)、决定系数(determination coefficient,R^(2))、均方根误差(root mean square error,RMSE)、效率因子(efficient factor,EF)和Pearson相关系数(pearson related coefficient,r)分别为4.5E-05、0.99、0.24、0.99和1.00,在储热罐温度预测中,上述指标分别为8.90E-04、0.98、0.07、0.98、0.99,均优于其他预测模型,IGWO-BP神经网络预测模型具有更好的预测性能。研究结果可为太阳能PV/T热电联供系统性能预测与优化控制提供参考。展开更多
Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor ...Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency.展开更多
This article is based on the T-S fuzzy control theory and investigates the synchronization control problem of complex networks with fuzzy connections. Firstly, the main stability equation of a complex network system i...This article is based on the T-S fuzzy control theory and investigates the synchronization control problem of complex networks with fuzzy connections. Firstly, the main stability equation of a complex network system is obtained, which can determine the stability of the synchronous manifold. Secondly, the main stable system is fuzzified, and based on fuzzy control theory, the control design of the fuzzified main stable system is carried out to obtain a coupling matrix that enables the complex network to achieve complete synchronization. The numerical analysis results indicate that the control method proposed in this paper can effectively achieve synchronization control of complex networks, while also controlling the transition time for the network to achieve synchronization.展开更多
文摘针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。
文摘为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IGWO-BP)预测模型,在晴朗天气下进行试验,并采用该模型对系统电功率以及蓄热水箱内水温进行预测。结果显示,晴朗日系统的电效率8.7%~12.2%、热效率51.7%;预测结果与BP神经网络预测模型、基于粒子群优化的BP神经网络(back propagation neural network based on particle swarm optimization,PSO-BP)预测模型和卷积神经网络(convolutional neural network,CNN)预测模型预测结果进行比较,结果显示IGWO-BP预测模型电效率预测模型的绝对百分比误差(mean absolute percentage error,MAPE)、决定系数(determination coefficient,R^(2))、均方根误差(root mean square error,RMSE)、效率因子(efficient factor,EF)和Pearson相关系数(pearson related coefficient,r)分别为4.5E-05、0.99、0.24、0.99和1.00,在储热罐温度预测中,上述指标分别为8.90E-04、0.98、0.07、0.98、0.99,均优于其他预测模型,IGWO-BP神经网络预测模型具有更好的预测性能。研究结果可为太阳能PV/T热电联供系统性能预测与优化控制提供参考。
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFB2205102)the National Natural Science Foundation of China(Grant Nos.61974164,62074166,61804181,62004219,62004220,and 62104256).
文摘Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency.
文摘This article is based on the T-S fuzzy control theory and investigates the synchronization control problem of complex networks with fuzzy connections. Firstly, the main stability equation of a complex network system is obtained, which can determine the stability of the synchronous manifold. Secondly, the main stable system is fuzzified, and based on fuzzy control theory, the control design of the fuzzified main stable system is carried out to obtain a coupling matrix that enables the complex network to achieve complete synchronization. The numerical analysis results indicate that the control method proposed in this paper can effectively achieve synchronization control of complex networks, while also controlling the transition time for the network to achieve synchronization.