In the present research,by using a numerical model,some analyses were performed on flows around a T-shape spur dike and a support structure located at its upstream under different wing to length ratios of T-shape spur...In the present research,by using a numerical model,some analyses were performed on flows around a T-shape spur dike and a support structure located at its upstream under different wing to length ratios of T-shape spur dike in the order of 0.25,0.50,0.75 and 1.00.In order to verify numerical model,physical model data were used in presence of a single T shape spur dike.Results from numerical model are desirably in agreement with those of physical one because the regression between both data is 0.86 up to 0.92.In this research,all hydraulic parameters of flows,streamlines and dimensions of flow separation zones were studied in order to select the most practical model.Increased W/L results in 7%–12%increase in the length of flow separation zone and in 2%increase in the width of this zone compared to W/L=0.25.展开更多
文摘In the present research,by using a numerical model,some analyses were performed on flows around a T-shape spur dike and a support structure located at its upstream under different wing to length ratios of T-shape spur dike in the order of 0.25,0.50,0.75 and 1.00.In order to verify numerical model,physical model data were used in presence of a single T shape spur dike.Results from numerical model are desirably in agreement with those of physical one because the regression between both data is 0.86 up to 0.92.In this research,all hydraulic parameters of flows,streamlines and dimensions of flow separation zones were studied in order to select the most practical model.Increased W/L results in 7%–12%increase in the length of flow separation zone and in 2%increase in the width of this zone compared to W/L=0.25.