We conduct a computational fluid dynamics simulation to investigate the behaviors of bubble breakup in a microfluidic T-junction using volume-of-fluid method to represent the interface. The evolution of bubble mor- ph...We conduct a computational fluid dynamics simulation to investigate the behaviors of bubble breakup in a microfluidic T-junction using volume-of-fluid method to represent the interface. The evolution of bubble mor- phology and the distributions of velocity and pressure in flow field are analyzed, and the effect of width ratio between main channel and branch on the bubble mor- phology are evaluated. The results indicate that, the "tun- nel" breakup, obstructed breakup, combined breakup and non-breakup are observed during the bubble flows through the T-junctions under different condition. The whole bub- ble breakup process undergoes the extension, squeeze and pinch-off stages, while the non-breakup process experi- ences extension and pushing stages. We find that, in the squeeze stage, a local vortex flow forms at the front edge of the bubble for the "tunnel" breakup while the velocity inside the bubble is of a parabolic distribution for the obstructed breakup. Irrespective of non-breakup regimes, there is a sudden pressure drop occurring at the gas-liquid interface of the bubble in the squeeze stage, and the pres- sure drop at the front interface is far larger than that at the depression region. The transition of the bubble breakup regime through the T-junction occurs with an increase in width ratio of main channel to the branch, which sequen- tially experiences the non-breakup regime, "tunnel" breakup regime and obstructed breakup regime. The flow regime diagrams are plotted with a power-law correlation to distinguish the bubble/droplet breakup and non-breakup regimes, which also characterize the difference between bubble and droplet breakup through a T-junction.展开更多
文摘We conduct a computational fluid dynamics simulation to investigate the behaviors of bubble breakup in a microfluidic T-junction using volume-of-fluid method to represent the interface. The evolution of bubble mor- phology and the distributions of velocity and pressure in flow field are analyzed, and the effect of width ratio between main channel and branch on the bubble mor- phology are evaluated. The results indicate that, the "tun- nel" breakup, obstructed breakup, combined breakup and non-breakup are observed during the bubble flows through the T-junctions under different condition. The whole bub- ble breakup process undergoes the extension, squeeze and pinch-off stages, while the non-breakup process experi- ences extension and pushing stages. We find that, in the squeeze stage, a local vortex flow forms at the front edge of the bubble for the "tunnel" breakup while the velocity inside the bubble is of a parabolic distribution for the obstructed breakup. Irrespective of non-breakup regimes, there is a sudden pressure drop occurring at the gas-liquid interface of the bubble in the squeeze stage, and the pres- sure drop at the front interface is far larger than that at the depression region. The transition of the bubble breakup regime through the T-junction occurs with an increase in width ratio of main channel to the branch, which sequen- tially experiences the non-breakup regime, "tunnel" breakup regime and obstructed breakup regime. The flow regime diagrams are plotted with a power-law correlation to distinguish the bubble/droplet breakup and non-breakup regimes, which also characterize the difference between bubble and droplet breakup through a T-junction.