期刊文献+
共找到1,081篇文章
< 1 2 55 >
每页显示 20 50 100
RBF neural network regression model based on fuzzy observations 被引量:1
1
作者 朱红霞 沈炯 苏志刚 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期400-406,共7页
A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership fu... A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy. 展开更多
关键词 radial basis function neural network (RBFNN) fuzzy membership function imprecise observation regression model
下载PDF
A Short-Term Traffic Flow Prediction ModelBased on Quantum Genetic Algorithm andFuzzy RBF Neural Networks
2
作者 Kun Zhang 《计算机科学与技术汇刊(中英文版)》 2016年第1期24-39,共16页
关键词 神经网络 流动模拟 基因算法 RBF 交通 预言 短期 ARIMA
下载PDF
A Multilayer Recurrent Fuzzy Neural Network for Accurate Dynamic System Modeling 被引量:5
3
作者 柳贺 黄道 《Journal of Donghua University(English Edition)》 EI CAS 2008年第4期373-378,共6页
A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback ... A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback connections in the membership layer and the rule layer.With these feedbacks,the fuzzy sets are time-varying and the temporal problem of dynamic system can be solved well.The parameters of MRFNN are learned by chaotic search(CS)and least square estimation(LSE)simultaneously,where CS is for tuning the premise parameters and LSE is for updating the consequent coefficients accordingly.Results of simulations show the proposed approach is effective for dynamic system modeling with high accuracy. 展开更多
关键词 recurrent neural networks t-s fuzzy model chaotic search least square estimation modelING
下载PDF
Fuzzy Entropy: Axiomatic Definition and Neural Networks Model 被引量:1
4
作者 QINGMing CAOYue HUANGTian-min 《Chinese Quarterly Journal of Mathematics》 CSCD 2004年第3期319-323,共5页
The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy sys... The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. Fuzzy entropy has been focused and studied by many researchers in various fields. In this paper, firstly, the axiomatic definition of fuzzy entropy is discussed. Then, neural networks model of fuzzy entropy is proposed, based on the computing capability of neural networks. In the end, two examples are discussed to show the efficiency of the model. 展开更多
关键词 neural networks BP networks fuzzy entropy fuzzy set model
下载PDF
Modelling and control PEMFC using fuzzy neural networks 被引量:1
5
作者 孙涛 闫思佳 +1 位作者 曹广益 朱新坚 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1084-1089,共6页
Proton exchange membrane generation technology is highly efficient, clean and considered as the most hopeful “green” power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system in... Proton exchange membrane generation technology is highly efficient, clean and considered as the most hopeful “green” power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermo-dynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model and control online. This paper first simply analyzes the characters of the PEMFC; and then uses the approach and self-study ability of artificial neural networks to build the model of the nonlinear system, and uses the adaptive neural-networks fuzzy infer system (ANFIS) to build the temperature model of PEMFC which is used as the reference model of the control system, and adjusts the model parameters to control it online. The model and control are implemented in SIMULINK environment. Simulation results showed that the test data and model agreed well, so it will be very useful for optimal and real-time control of PEMFC system. 展开更多
关键词 Proton exchange membrane fuel cell Adaptive neural-networks fuzzy infer system modelING neural network
下载PDF
Modeling and Stability Analysis for Non-linear Network Control System Based on T-S Fuzzy Model 被引量:2
6
作者 ZHANG Hong FANG Huajing 《现代电子技术》 2007年第5期138-141,144,共5页
Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this ... Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model.Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model.All these results present a new approach for networked control system analysis and design. 展开更多
关键词 模糊模型 非线性系统 时延 网络控制系统 通信技术
下载PDF
Neural Network Based Multi-level Fuzzy Evaluation Model for Mechanical Kinematic Scheme
7
作者 BO Ruifeng,LI Ruiqin (Department of Mechanical Engineering,North University of China,Taiyuan 030051,China) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S1期301-306,共6页
To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure ... To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation. 展开更多
关键词 neural network mechanical KINEMATIC sCHEME MULTI-LEVEL evaluation model fuzzy
下载PDF
Modeling of Multi-Freedom Ship Motions in Irregular Waves with Fuzzy Neural Networks
8
作者 余建星 陆培毅 +1 位作者 高喜峰 夏锦祝 《海洋工程:英文版》 2003年第2期255-264,共10页
In this paper, the neural network technology is combined with the fuzzy set theory to model the wave-induced ship motions in irregular seas. This combination makes possible the handling of a non-linear dynamic system ... In this paper, the neural network technology is combined with the fuzzy set theory to model the wave-induced ship motions in irregular seas. This combination makes possible the handling of a non-linear dynamic system with insufficient input information. The numerical results from the strip theory are used to train the networks and to demonstrate the validity of the proposed procedure. 展开更多
关键词 strip theory ship motions neural network fuzzy logic system modeling
下载PDF
The Fuzzy Modeling Algorithm for Complex Systems Based on Stochastic Neural Network
9
作者 李波 张世英 李银惠 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第3期46-51,共6页
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge... A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness. 展开更多
关键词 Complex system modeling General stochastic neural network MTs fuzzy model Expectation-maximization algorithm
下载PDF
Neural-networks-based Modelling and a Fuzzy Neural Networks Controller of MCFC
10
作者 沈承 Cao +2 位作者 Guangyi Zhu Xinjian 《High Technology Letters》 EI CAS 2002年第2期76-82,共7页
Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial... Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial basis function (RBF) neural networks identification technology is applied to set up the temperature nonlinear model of MCFC stack, and the identification structure, algorithm and modeling training process are given in detail. A fuzzy controller of MCFC stack is designed. In order to improve its online control ability, a neural network trained by the I/O data of a fuzzy controller is designed. The neural networks can memorize and expand the inference rules of the fuzzy controller and substitute for the fuzzy controller to control MCFC stack online. A detailed design of the controller is given. The validity of MCFC stack modelling based on neural networks and the superior performance of the fuzzy neural networks controller are proved by Simulations. 展开更多
关键词 Molten Carbonate Fuel Cells (MCFC) Radial Basis Function (RBF) fuzzy neural networks control modelling
下载PDF
Soft Computing of Biochemical Oxygen Demand Using an Improved T–S Fuzzy Neural Network 被引量:4
11
作者 乔俊飞 李微 韩红桂 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1254-1259,共6页
It is difficult to measure the online values of biochemical oxygen demand(BOD) due to the characteristics of nonlinear dynamics, large lag and uncertainty in wastewater treatment process. In this paper, based on the k... It is difficult to measure the online values of biochemical oxygen demand(BOD) due to the characteristics of nonlinear dynamics, large lag and uncertainty in wastewater treatment process. In this paper, based on the knowledge representation ability and learning capability, an improved T–S fuzzy neural network(TSFNN) is introduced to predict BOD values by the soft computing method. In this improved TSFNN, a K-means clustering is used to initialize the structure of TSFNN, including the number of fuzzy rules and parameters of membership function. For training TSFNN, a gradient descent method with the momentum item is used to adjust antecedent parameters and consequent parameters. This improved TSFNN is applied to predict the BOD values in effluent of the wastewater treatment process. The simulation results show that the TSFNN with K-means clustering algorithm can measure the BOD values accurately. The algorithm presents better approximation performance than some other methods. 展开更多
关键词 BIOCHEMICAL oxygen DEMAND WAsTEWATER treatment T–s fuzzy neural network K-MEANs clustering
下载PDF
Flatness predictive model based on T-S cloud reasoning network implemented by DSP 被引量:4
12
作者 ZHANG Xiu-ling GAO Wu-yang +1 位作者 LAI Yong-jin CHENG Yan-tao 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2222-2230,共9页
The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digita... The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digital signal processor(DSP) is proposed. First, the combination of genetic algorithm(GA) and simulated annealing algorithm(SAA) is put forward, called GA-SA algorithm, which can make full use of the global search ability of GA and local search ability of SA. Later, based on T-S cloud reasoning neural network, flatness predictive model is designed in DSP. And it is applied to 900 HC reversible cold rolling mill. Experimental results demonstrate that the flatness predictive model via T-S cloud reasoning network can run on the hardware DSP TMS320 F2812 with high accuracy and robustness by using GA-SA algorithm to optimize the model parameter. 展开更多
关键词 t-s CLOUD reasoning neural network CLOUD model FLATNEss predictive model hardware implementation digital signal PROCEssOR genetic ALGORITHM and simulated annealing ALGORITHM (GA-sA)
下载PDF
Robust stability analysis of Takagi-Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays 被引量:1
13
作者 M.Syed Ali 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期1-15,共15页
In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stabili... In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs. The proposed stability conditions are demonstrated through numerical examples. Furthermore, the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed. Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature. 展开更多
关键词 recurrent neural networks linear matrix inequality Lyapunov stability time-varyingdelays Ts fuzzy model
下载PDF
HPSO-based fuzzy neural network control for AUV 被引量:1
14
作者 Lei ZHANG Yongjie PANG Yumin SU Yannan LIANG 《控制理论与应用(英文版)》 EI 2008年第3期322-326,共5页
A fuzzy neural network controller for underwater vehicles has many parameters difficult to tune manually. To reduce the numerous work and subjective uncertainties in manual adjustments, a hybrid particle swarm optimiz... A fuzzy neural network controller for underwater vehicles has many parameters difficult to tune manually. To reduce the numerous work and subjective uncertainties in manual adjustments, a hybrid particle swarm optimization (HPSO) algorithm based on immune theory and nonlinear decreasing inertia weight (NDIW) strategy is proposed. Owing to the restraint factor and NDIW strategy, an HPSO algorithm can effectively prevent premature convergence and keep balance between global and local searching abilities. Meanwhile, the algorithm maintains the ability of handling multimodal and multidimensional problems. The HPSO algorithm has the fastest convergence velocity and finds the best solutions compared to GA, IGA, and basic PSO algorithm in simulation experiments. Experimental results on the AUV simulation platform show that HPSO-based controllers perform well and have strong abilities against current disturbance. It can thus be concluded that the proposed algorithm is feasible for application to AUVs. 展开更多
关键词 Autonomous underwater vehicle fuzzy neural network model reference adaptive control Particle swarm optimization algorithm Immune theory
下载PDF
Hybrid Power Systems Energy Controller Based on Neural Network and Fuzzy Logic 被引量:2
15
作者 Emad M. Natsheh Alhussein Albarbar 《Smart Grid and Renewable Energy》 2013年第2期187-197,共11页
This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy sto... This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy storage elements in order to satisfy the load requirements based on artificial neural network (ANN) and fuzzy logic controllers. The neural network controller is employed to achieve the maximum power point (MPP) for different types of photovoltaic (PV) panels. The advance fuzzy logic controller is developed to distribute the power among the hybrid system and to manage the charge and discharge current flow for performance optimization. The developed management system performance was assessed using a hybrid system comprised PV panels, wind turbine (WT), battery storage, and proton exchange membrane fuel cell (PEMFC). To improve the generating performance of the PEMFC and prolong its life, stack temperature is controlled by a fuzzy logic controller. The dynamic behavior of the proposed model is examined under different operating conditions. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for optimizing hybrid power system performance, such as that used in smart-house applications. 展开更多
关键词 Artificial neural network Energy Management fuzzy Control Hybrid POWER systems MAXIMUM POWER Point TRACKER modeling
下载PDF
Robust fuzzy control of Takagi-Sugeno fuzzy neural networks with discontinuous activation functions and time delays
16
作者 Yaonan Wang Xiru Wu Yi Zuo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期473-481,共9页
The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theor... The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results. 展开更多
关键词 delayed neural network global robust asymptotical stability discontinuous neuron activation linear matrix inequality(LMI) Takagi-sugeno(t-s fuzzy model.
下载PDF
Novel stability criteria for fuzzy Hopfield neural networks based on an improved homogeneous matrix polynomials technique
17
作者 冯毅夫 张庆灵 冯德志 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期179-188,共10页
The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guar... The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism.Firstly,using both Finsler's lemma and an improved homogeneous matrix polynomial technique,and applying an affine parameter-dependent Lyapunov-Krasovskii functional,we obtain the convergent LMI-based stability criteria.Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique.Secondly,to further reduce the conservatism,a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs,which is suitable to the homogeneous matrix polynomials setting.Finally,two illustrative examples are given to show the efficiency of the proposed approaches. 展开更多
关键词 Hopfield neural networks linear matrix inequality Takagi-sugeno fuzzy model homogeneous polynomially technique
下载PDF
A new neural network model for the feedback stabilization of nonlinear systems
18
作者 Mei-qin LIU Sen-lin ZHANG Gang-feng YAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第8期1015-1023,共9页
A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constrain... A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constraints are shown to be a set of linear matrix inequalities (LMIs), which can be easily solved by the MATLAB LMI Control Toolbox to determine the control law. Most recurrent neural networks (including the chaotic neural network) and nonlinear systems modeled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be stabilization controllers synthesized in the framework of a unified SNNM. Finally, three numerical examples are provided to illustrate the design developed in this paper. 展开更多
关键词 standard neural network model sNNM) Linear matrix inequality (LMI) Nonlinear control Asymptotic stability Chaotic cellular neural network Takagi and sugeno t-s fuzzy model
下载PDF
A Hopfield-like hippocampal CA3 neural network model for studying associative memory in Alzheimer's disease
19
作者 Wangxiong Zhao Qingli Qiao Dan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第22期1694-1700,共7页
Associative memory, one of the major cognitive functions in the hippocampal CA3 region, includes auto-associative memory and hetero-associative memory. Many previous studies have shown that Alzheimer's disease (AD)... Associative memory, one of the major cognitive functions in the hippocampal CA3 region, includes auto-associative memory and hetero-associative memory. Many previous studies have shown that Alzheimer's disease (AD) can lead to loss of functional synapses in the central nervous system, and associative memory functions in patients with AD are often impaired, but few studies have addressed the effect of AD on hetero-associative memory in the hippocampal CA3 region. In this study, based on a simplified anatomical structure and synaptic connections in the hippocampal CA3 region, a three-layered Hopfield-like neural network model of hippocampal CA3 was proposed and then used to simulate associative memory functions in three circumstances: normal, synaptic deletion and synaptic compensation, according to Ruppin's synaptic deletion and compensation theory. The influences of AD on hetero-associative memory were further analyzed. The simulated results showed that the established three-layered Hopfield-like neural network model of hippocampal CA3 has both auto-associative and hetero-associative memory functions. With increasing synaptic deletion level, both associative memory functions were gradually impaired and the mean firing rates of the neurons within the network model were decreased. With gradual increasing synaptic compensation, the associative memory functions of the network were improved and the mean firing rates were increased. The simulated results suggest that the Hopfield-like neural network model can effectively simulate both associative memory functions of the hippocampal CA3 region. Synaptic deletion affects both auto-associative and hetero-associative memory functions in the hippocampal CA3 region, and can also result in memory dysfunction. To some extent, synaptic compensation measures can offset two kinds of associative memory dysfunction caused by synaptic deletion in the hippocampal CA3 area. 展开更多
关键词 hippocampal CA3 region Hopfield-like neural network associative memory Alzheimer's disease Izhkevich neuronal model firing rate
下载PDF
High-precision chaotic radial basis function neural network model:Data forecasting for the Earth electromagnetic signal before a strong earthquake
20
作者 Guocheng Hao Juan Guo +2 位作者 Wei Zhang Yunliang Chen David AYuen 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第1期364-373,共10页
The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters... The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters.Forecasting of the underlying intensity trend plays an important role in the analysis of data and disaster monitoring.Combining chaos theory and the radial basis function neural network,this paper proposes a forecasting model of the chaotic radial basis function neural network to conduct underlying intensity trend forecasting by the Earth’s natural pulse electromagnetic field signal.The main strategy of this forecasting model is to obtain parameters as the basis for optimizing the radial basis function neural network and to forecast the reconstructed Earth’s natural pulse electromagnetic field data.In verification experiments,we employ the 3 and 6 days’data of two channels as training samples to forecast the 14 and 21-day Earth’s natural pulse electromagnetic field data respectively.According to the forecasting results and absolute error results,the chaotic radial basis function forecasting model can fit the fluctuation trend of the actual signal strength,effectively reduce the forecasting error compared with the traditional radial basis function model.Hence,this network may be useful for studying the characteristics of the Earth’s natural pulse electromagnetic field signal before a strong earthquake and we hope it can contribute to the electromagnetic anomaly monitoring before the earthquake. 展开更多
关键词 Earth’s natural pulse electromagnetic field Chaos theory Radial Basis Function neural network Forecasting model
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部