In view of the problems such as backward production mode,poor quality stability,high safety risk and incomplete control system during erection of the reinforcement framework of simply-supported box girders for high-sp...In view of the problems such as backward production mode,poor quality stability,high safety risk and incomplete control system during erection of the reinforcement framework of simply-supported box girders for high-speed railway(HSR),and in combination with the key points and main challenges in the reinforcement framework construction of Guangzhou-Zhanjiang HSR,the overall technical route for the intelligent manufacturing of reinforcement framework of simply-supported box girders is put forward.The component design of reinforcement framework of simply supported box girder is carried out based on BIM,and the feasibility of the scheme is verified through segment assembly test.The assembly techniques are studied in combination with the mesh design scheme to achieve rapid forming of the reinforcement framework.R&D of automatic processing equipment for components,material transshipment equipment,automatic hoisting equipment and technological equipment for assembly clamping fixture are carried out to realize the overall design of equipment production line.An intelligent control system is developed for the whole-process intelligent construction of reinforcement framework to realize the full life-cycle applications for the workshop production and visual management including intelligent layout and quality traceability.The research results systematically optimize and innovate the assembly and forming technologies of reinforcement framework in the prefabrication beam yard of high-speed railway,realize the component processing,automatic assembly and information technology management,improve the construction quality,efficiency and information technology level of intelligent manufacturing of reinforcement framework of railway prefabricated beam as a whole,and reduce the construction cost of the project.The research has realized a major breakthrough in the construction technology of railway prefabricated box girders,which has the extensive technical and market promotion values.展开更多
To improve the quality of the Hong Kong–Zhuhai–Macao Bridge paving project,a new paving layer material,Guss-mastic asphalt(GMA),was proposed in this paper by combining the advantages of two types of cast asphalt mix...To improve the quality of the Hong Kong–Zhuhai–Macao Bridge paving project,a new paving layer material,Guss-mastic asphalt(GMA),was proposed in this paper by combining the advantages of two types of cast asphalt mixtures:mastic asphalt(MA)and Guss asphalt(GA).Based on the characteristics of GMA,to simulate its actual production process,this study developed a small-simulated cooker mixing equipment.Moreover,the flow degree,60C dynamic stability,and impact toughness were proposed to be used to evaluate the construction and ease,high temperature stability,and fatigue resistance of GMA cast asphalt mixtures,respectively.Moreover,the quality control standards for GMA paving materials by indoor tests,field trial mix GMA material performance tests,and accelerated loading tests were finalized.The study showed that the developed simulated cooker yielded consistent mixing results in the same working environment as the engineering cooker device.Increasing the coarse aggregate incorporation rate,coarsening the mastic epure(ME)gradation composition,and using a smaller oil to stone ratio can reduce the flowability of the GMA materials to varying degrees.The four-point bending fatigue life and impact toughness of the different GMA materials are correlated well.A mobility of<20 s,60C dynamic stability of 400–800 times/mm,15C impact toughness of400 N⋅mm,and cooker car mixing temperature control standard of 210C–230C form an appropriate control index system for the design and production of GMA cast asphalt mixtures.Simultaneously,accelerated loading tests verified the accuracy and reliability of the quality control index system that has been used in the GMA paving project of the Hong Kong–Zhuhai–Macao Bridge deck and has achieved good application results.展开更多
Formwork construction has been the important and difficult of the construction process, so the design plan is very important. This paper relies on the Shun Ping Yu subordinate Fertgbo bridge rebuilding project, detail...Formwork construction has been the important and difficult of the construction process, so the design plan is very important. This paper relies on the Shun Ping Yu subordinate Fertgbo bridge rebuilding project, detailing the cast-in-place box beam formwork support system safety special construction plan, focuses on box girder formwork design scheme of foundation design, box girder bracket design and box girder formwork design, to provide a reasonable reference for similar projects.展开更多
The paper introduce the construction method of large segment hosting and its difficulty, and drawing up corresponding liner and stress monitoring plan. The paper gives the calculation method of shear area for such a b...The paper introduce the construction method of large segment hosting and its difficulty, and drawing up corresponding liner and stress monitoring plan. The paper gives the calculation method of shear area for such a big cantilever thin-walled steel box girder section, namely the shear coefficient computation theory of Professor Hu Haichang, and the use of this shear area perfect beam element model, structure model and the experiment prove that the shell model is more consistent, given a certain reference for similar section project.展开更多
At present,the precast construction technology has been widely used,especially in the process of bridge construction,where the precast box girder construction and erection technology has attracted more attention compa...At present,the precast construction technology has been widely used,especially in the process of bridge construction,where the precast box girder construction and erection technology has attracted more attention compared to other available methods.In order to effectively improve the application effect of this technology,and the overall quality of the bridge,this paper discusses the advantage and disadvantage of implementing the precast box girder construction and erection technology in the bridge construction.展开更多
The Fenghua River Bridge is a major structure on the highway between Hengzhang and Guojiachi, which is to be built with a four-span prestress concrete (PC) box girder and symmetrical cantilever castings. In this paper...The Fenghua River Bridge is a major structure on the highway between Hengzhang and Guojiachi, which is to be built with a four-span prestress concrete (PC) box girder and symmetrical cantilever castings. In this paper, a finite element method (FEM) model is set up to study the effects of concrete differential aging time on the construction phases of the Fenghua River Bridge by calculating the vertical displacement of the folding segment of the middle span and the longitudinal bending moment of Pier 12#. In the model, the girders are classified into 150 changing sections based on the desgn scheme, and their construction is to be carried in 16 phases respectively to build 12 blocks connected by a side folding segment and a middle folding segment, covered with a second dead load and in completion for 20 years. It is found that the internal forces and deformations of the concrete structures at the aging time of 60 d are quite different from those of 0 d aging time while the behaviors of the structures of 120 d aging time is nearly the same as those of 60 d aging time― the differences are so small that can be neglected, suggesting that the creep develops obviously about one month after the cement is hardened and the development fades later on.展开更多
文摘In view of the problems such as backward production mode,poor quality stability,high safety risk and incomplete control system during erection of the reinforcement framework of simply-supported box girders for high-speed railway(HSR),and in combination with the key points and main challenges in the reinforcement framework construction of Guangzhou-Zhanjiang HSR,the overall technical route for the intelligent manufacturing of reinforcement framework of simply-supported box girders is put forward.The component design of reinforcement framework of simply supported box girder is carried out based on BIM,and the feasibility of the scheme is verified through segment assembly test.The assembly techniques are studied in combination with the mesh design scheme to achieve rapid forming of the reinforcement framework.R&D of automatic processing equipment for components,material transshipment equipment,automatic hoisting equipment and technological equipment for assembly clamping fixture are carried out to realize the overall design of equipment production line.An intelligent control system is developed for the whole-process intelligent construction of reinforcement framework to realize the full life-cycle applications for the workshop production and visual management including intelligent layout and quality traceability.The research results systematically optimize and innovate the assembly and forming technologies of reinforcement framework in the prefabrication beam yard of high-speed railway,realize the component processing,automatic assembly and information technology management,improve the construction quality,efficiency and information technology level of intelligent manufacturing of reinforcement framework of railway prefabricated beam as a whole,and reduce the construction cost of the project.The research has realized a major breakthrough in the construction technology of railway prefabricated box girders,which has the extensive technical and market promotion values.
文摘To improve the quality of the Hong Kong–Zhuhai–Macao Bridge paving project,a new paving layer material,Guss-mastic asphalt(GMA),was proposed in this paper by combining the advantages of two types of cast asphalt mixtures:mastic asphalt(MA)and Guss asphalt(GA).Based on the characteristics of GMA,to simulate its actual production process,this study developed a small-simulated cooker mixing equipment.Moreover,the flow degree,60C dynamic stability,and impact toughness were proposed to be used to evaluate the construction and ease,high temperature stability,and fatigue resistance of GMA cast asphalt mixtures,respectively.Moreover,the quality control standards for GMA paving materials by indoor tests,field trial mix GMA material performance tests,and accelerated loading tests were finalized.The study showed that the developed simulated cooker yielded consistent mixing results in the same working environment as the engineering cooker device.Increasing the coarse aggregate incorporation rate,coarsening the mastic epure(ME)gradation composition,and using a smaller oil to stone ratio can reduce the flowability of the GMA materials to varying degrees.The four-point bending fatigue life and impact toughness of the different GMA materials are correlated well.A mobility of<20 s,60C dynamic stability of 400–800 times/mm,15C impact toughness of400 N⋅mm,and cooker car mixing temperature control standard of 210C–230C form an appropriate control index system for the design and production of GMA cast asphalt mixtures.Simultaneously,accelerated loading tests verified the accuracy and reliability of the quality control index system that has been used in the GMA paving project of the Hong Kong–Zhuhai–Macao Bridge deck and has achieved good application results.
文摘Formwork construction has been the important and difficult of the construction process, so the design plan is very important. This paper relies on the Shun Ping Yu subordinate Fertgbo bridge rebuilding project, detailing the cast-in-place box beam formwork support system safety special construction plan, focuses on box girder formwork design scheme of foundation design, box girder bracket design and box girder formwork design, to provide a reasonable reference for similar projects.
文摘The paper introduce the construction method of large segment hosting and its difficulty, and drawing up corresponding liner and stress monitoring plan. The paper gives the calculation method of shear area for such a big cantilever thin-walled steel box girder section, namely the shear coefficient computation theory of Professor Hu Haichang, and the use of this shear area perfect beam element model, structure model and the experiment prove that the shell model is more consistent, given a certain reference for similar section project.
文摘At present,the precast construction technology has been widely used,especially in the process of bridge construction,where the precast box girder construction and erection technology has attracted more attention compared to other available methods.In order to effectively improve the application effect of this technology,and the overall quality of the bridge,this paper discusses the advantage and disadvantage of implementing the precast box girder construction and erection technology in the bridge construction.
文摘The Fenghua River Bridge is a major structure on the highway between Hengzhang and Guojiachi, which is to be built with a four-span prestress concrete (PC) box girder and symmetrical cantilever castings. In this paper, a finite element method (FEM) model is set up to study the effects of concrete differential aging time on the construction phases of the Fenghua River Bridge by calculating the vertical displacement of the folding segment of the middle span and the longitudinal bending moment of Pier 12#. In the model, the girders are classified into 150 changing sections based on the desgn scheme, and their construction is to be carried in 16 phases respectively to build 12 blocks connected by a side folding segment and a middle folding segment, covered with a second dead load and in completion for 20 years. It is found that the internal forces and deformations of the concrete structures at the aging time of 60 d are quite different from those of 0 d aging time while the behaviors of the structures of 120 d aging time is nearly the same as those of 60 d aging time― the differences are so small that can be neglected, suggesting that the creep develops obviously about one month after the cement is hardened and the development fades later on.