Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The si...Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds.展开更多
Maraging steels have excellent combination of strength and toughness and are extensively used for a variety of aerospace applications. In one such critical application, this steel was used to fabricate shear screws of...Maraging steels have excellent combination of strength and toughness and are extensively used for a variety of aerospace applications. In one such critical application, this steel was used to fabricate shear screws of a stage separation system in a satellite launch vehicle. During assembly preparations, one of the shear screws which connected the separation band and band end block has failed at the first thread. Microstructural analysis revealed that the crack originated from the root of the thread and propagated in an intergranular mode. The failure is attributed to combined effect of stress and corrosion leading to stress corrosion cracking.展开更多
Electron-beam (EB) welding was used in T250 maraging steel, microstructures of both base material and heat affected zone (HAZ) were investigated by optical microscopy (OM), scanning electron microscopy (SEM) a...Electron-beam (EB) welding was used in T250 maraging steel, microstructures of both base material and heat affected zone (HAZ) were investigated by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and microhardness was tested. The results showed that during EB welding, the HAZ of T250 maraging steel exhibited a continuous gradient structure. The microstrueture of the entire HAZ, from fusion line, could be divided into four zones: fusion zone, overheated zone, transition zone, and hardened zone. The microhardness showed a distinct regularity in each area. The softest region was the fusion zone, whereas the hardest was the hardened zone. In the overheated zone, the hardness increased as the grain size decreased. Furthermore, in the transition zone, the hardness level dropped noticeably. The peak temperature during the thermal cycle had a great influence on the formation of reverted austenite and dissolution of the precipitated particles, which contributed a lot to the microstructure and hardness of this material.展开更多
基金Supported by the General Program of National Natural Science Foundation of China(Grant No.51679133)The State Key Program of National Natural Science of China(Project No.51439004)
基金Financial assistance from Defence Research and Development Organisation
文摘Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds.
文摘Maraging steels have excellent combination of strength and toughness and are extensively used for a variety of aerospace applications. In one such critical application, this steel was used to fabricate shear screws of a stage separation system in a satellite launch vehicle. During assembly preparations, one of the shear screws which connected the separation band and band end block has failed at the first thread. Microstructural analysis revealed that the crack originated from the root of the thread and propagated in an intergranular mode. The failure is attributed to combined effect of stress and corrosion leading to stress corrosion cracking.
基金Item Sponsored by National Natural Science Foundation of China (50771073)
文摘Electron-beam (EB) welding was used in T250 maraging steel, microstructures of both base material and heat affected zone (HAZ) were investigated by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and microhardness was tested. The results showed that during EB welding, the HAZ of T250 maraging steel exhibited a continuous gradient structure. The microstrueture of the entire HAZ, from fusion line, could be divided into four zones: fusion zone, overheated zone, transition zone, and hardened zone. The microhardness showed a distinct regularity in each area. The softest region was the fusion zone, whereas the hardest was the hardened zone. In the overheated zone, the hardness increased as the grain size decreased. Furthermore, in the transition zone, the hardness level dropped noticeably. The peak temperature during the thermal cycle had a great influence on the formation of reverted austenite and dissolution of the precipitated particles, which contributed a lot to the microstructure and hardness of this material.