The 3' half molecule of yeast tRNAAla (nucleotides 36-75) was hybridized with a DNA fragment (5'GGAATCGAACC 3') and the hybrid was then digested with E. coli RNase H (from Boehringer). The enzyme can speci...The 3' half molecule of yeast tRNAAla (nucleotides 36-75) was hybridized with a DNA fragment (5'GGAATCGAACC 3') and the hybrid was then digested with E. coli RNase H (from Boehringer). The enzyme can specifically cleave the 3' half molecule at the 3' side of nucleotide ψ55, thus a fragment C36-ψ55 was prepared. The 3'-terminal T or Tψ of this fragment was removed by one or two cycles of periodate oxidation and $-elimination. The products were fragments C36-T54 and C36-G53. Three yeast tRNAAla fragments C56-A76, U55-A76 (with ψ55 replaced by U), U54-A76 (with T54ψ55 replaced by UU) were synthesized and ligated with three prepared fragments (C36-ψ55 C36-T54 and C36-G53) respectively by T4 RNA ligase. The products were further ligated with the 5' half molecule (nu-cleotides 1-35). Using this method, one reconstituted yeast tRNAAla (tRNAr) and two yeast tRNAAla analogs: (i) tRNAa with U55 instead of ψ55; (ii) tRNAb with U54U55 instead of T54ψ55 were synthesized. The charging and incorporation activities of these three tRNAs were determined. In comparison with the reconstituted tRNA, the charging activity was 75% for tRNAa and 45% for tRNAb and the incorporation activity was 65% for tRNAa and 70% for tRNAb. These results suggest that the modified nucleotides T54 and ψ55 play an important role in yeast tRNAAla func-tion.展开更多
基金Project supported by the National Natural Science Foundation of China.
文摘The 3' half molecule of yeast tRNAAla (nucleotides 36-75) was hybridized with a DNA fragment (5'GGAATCGAACC 3') and the hybrid was then digested with E. coli RNase H (from Boehringer). The enzyme can specifically cleave the 3' half molecule at the 3' side of nucleotide ψ55, thus a fragment C36-ψ55 was prepared. The 3'-terminal T or Tψ of this fragment was removed by one or two cycles of periodate oxidation and $-elimination. The products were fragments C36-T54 and C36-G53. Three yeast tRNAAla fragments C56-A76, U55-A76 (with ψ55 replaced by U), U54-A76 (with T54ψ55 replaced by UU) were synthesized and ligated with three prepared fragments (C36-ψ55 C36-T54 and C36-G53) respectively by T4 RNA ligase. The products were further ligated with the 5' half molecule (nu-cleotides 1-35). Using this method, one reconstituted yeast tRNAAla (tRNAr) and two yeast tRNAAla analogs: (i) tRNAa with U55 instead of ψ55; (ii) tRNAb with U54U55 instead of T54ψ55 were synthesized. The charging and incorporation activities of these three tRNAs were determined. In comparison with the reconstituted tRNA, the charging activity was 75% for tRNAa and 45% for tRNAb and the incorporation activity was 65% for tRNAa and 70% for tRNAb. These results suggest that the modified nucleotides T54 and ψ55 play an important role in yeast tRNAAla func-tion.