The failure behavior of the precast prestressed concrete T girder was investigated by destructive test and finite-element analysis,and the mid-span deflection,girder stiffness and the variation of the cross section st...The failure behavior of the precast prestressed concrete T girder was investigated by destructive test and finite-element analysis,and the mid-span deflection,girder stiffness and the variation of the cross section strain in the loading process were obtained,and the mechanical properties,mechanical behavior,elastic and plastic behavior and ultimate bearing capacity of T girder with large span were revealed.Furthermore,the relationship between the beam stiffness degradation,the neutral axis in cross-section,steel yielding and concrete cracking are investigated and analyzed.A method was proposed to predict the residual bearing capacity of a bridge based on the variation of the position of the cross section strain distribution and the section neutral axis,which provided a theoretical basis for predicting the stiffness detection and carrying capacity assessment of prestressed concrete beam.展开更多
The shear performance, modes of failure, and strain analysis of simply supported reinforced concrete (RC) T-beams, externally strengthened in shear using epoxy bonded glass fiber reinforced polymer (GFRP) strips a...The shear performance, modes of failure, and strain analysis of simply supported reinforced concrete (RC) T-beams, externally strengthened in shear using epoxy bonded glass fiber reinforced polymer (GFRP) strips are focused in the present paper. Six RC T-beams of 2.5 m span without shear reinforcement are cast. Three beams are used as control specimens and rest three beams are strengthened in shear with GFRP strips in U-shape, side bonded at 45° and 90° to the longitudinal axis of the beam. All the beams are tested in a Universal Testing Machine. The test results demonstrate the feasibility of using an externally applied, epoxy-bonded GFRP strips to restore or increase the shear strength of RC T-beams. It is also observed that the RC T-beams strengthened by diagonal side strips outperformed those strengthened with vertical side strips.展开更多
To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concret...To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.展开更多
Recently,inverted T-beams have been used in reinforced concrete(RC)bridges to support transverse precast stringers.Inverted T-beams,contrary to practice with conventional beams,are loaded on the flanges upper surface....Recently,inverted T-beams have been used in reinforced concrete(RC)bridges to support transverse precast stringers.Inverted T-beams,contrary to practice with conventional beams,are loaded on the flanges upper surface.This loading configuration causes hanger failure due to the generation of vertical tensile stresses near the bottom of the web.The key purpose of this study is to investigate the efficiency of vertical external prestressing stainless-steel bars in mitigating non-ductile hanger failure in reinforced concrete inverted T-beams.An experimental study on six inverted-T beams,including two un-strengthened specimens,was carried out.The study showed that the value of the prestressing level had a considerable impact on the performance of hanger mechanism in relation to crack pattern,ultimate loads,cracking behavior,load-deflection,strains,and ductility.The experimental results indicated that the suggested method for strengthening inverted T-beams had efficacy in reducing the seriousness of the non-ductile hanger failure and resulted in a strength increase of up to 53% when compared to that of the un-strengthened specimen.Additionally,two analytical models for estimating the hanger capacity and the average crack width of the strengthened RC inverted T-beams were proposed.The models that were proposed exhibited a high degree of agreement with the experimental results.展开更多
The provision of transverse openings in floor beams to facilitate the passage of utility pipes and service ducts not only results in a more systematic layout of pipes and ducts,it also translates into substantial econ...The provision of transverse openings in floor beams to facilitate the passage of utility pipes and service ducts not only results in a more systematic layout of pipes and ducts,it also translates into substantial economic savings in the construction of a multi-storey building.In this paper,ultimate load analysis of statically loaded simply supported pretensioned inverted T-beams with circular web openings is presented.Major findings relevant to ultimate load analysis of pretensioned beams with circular web openings are summarized.An attempt has been made to answer the frequently asked questions related to ultimate load analysis on multiple circular web open-ings.It has been shown that the analysis method for pretensioned beams with multiple large circular web openings can be further simplified without sacrificing rationality.展开更多
基金the support from the Program for Natural Science Foundation of Zhejiang Province(LY16E080006)National Natural Science Foundation of China(51378240)+1 种基金2015 Jiangsu provincial building energy saving and construction industry science and technology project2016 Jiangsu provincial construction industry modernization base project.
文摘The failure behavior of the precast prestressed concrete T girder was investigated by destructive test and finite-element analysis,and the mid-span deflection,girder stiffness and the variation of the cross section strain in the loading process were obtained,and the mechanical properties,mechanical behavior,elastic and plastic behavior and ultimate bearing capacity of T girder with large span were revealed.Furthermore,the relationship between the beam stiffness degradation,the neutral axis in cross-section,steel yielding and concrete cracking are investigated and analyzed.A method was proposed to predict the residual bearing capacity of a bridge based on the variation of the position of the cross section strain distribution and the section neutral axis,which provided a theoretical basis for predicting the stiffness detection and carrying capacity assessment of prestressed concrete beam.
文摘The shear performance, modes of failure, and strain analysis of simply supported reinforced concrete (RC) T-beams, externally strengthened in shear using epoxy bonded glass fiber reinforced polymer (GFRP) strips are focused in the present paper. Six RC T-beams of 2.5 m span without shear reinforcement are cast. Three beams are used as control specimens and rest three beams are strengthened in shear with GFRP strips in U-shape, side bonded at 45° and 90° to the longitudinal axis of the beam. All the beams are tested in a Universal Testing Machine. The test results demonstrate the feasibility of using an externally applied, epoxy-bonded GFRP strips to restore or increase the shear strength of RC T-beams. It is also observed that the RC T-beams strengthened by diagonal side strips outperformed those strengthened with vertical side strips.
文摘To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.
文摘Recently,inverted T-beams have been used in reinforced concrete(RC)bridges to support transverse precast stringers.Inverted T-beams,contrary to practice with conventional beams,are loaded on the flanges upper surface.This loading configuration causes hanger failure due to the generation of vertical tensile stresses near the bottom of the web.The key purpose of this study is to investigate the efficiency of vertical external prestressing stainless-steel bars in mitigating non-ductile hanger failure in reinforced concrete inverted T-beams.An experimental study on six inverted-T beams,including two un-strengthened specimens,was carried out.The study showed that the value of the prestressing level had a considerable impact on the performance of hanger mechanism in relation to crack pattern,ultimate loads,cracking behavior,load-deflection,strains,and ductility.The experimental results indicated that the suggested method for strengthening inverted T-beams had efficacy in reducing the seriousness of the non-ductile hanger failure and resulted in a strength increase of up to 53% when compared to that of the un-strengthened specimen.Additionally,two analytical models for estimating the hanger capacity and the average crack width of the strengthened RC inverted T-beams were proposed.The models that were proposed exhibited a high degree of agreement with the experimental results.
基金The authors gratefully acknowledge the financial support from the Universiti Malaysia Pahang(UMP)through a short-term grant(Grant No.FR56398)from the Ministry of Science,Technology and Innovation(MOSTI)through an e-science fund(Grant No.03-02-03 SF0115).
文摘The provision of transverse openings in floor beams to facilitate the passage of utility pipes and service ducts not only results in a more systematic layout of pipes and ducts,it also translates into substantial economic savings in the construction of a multi-storey building.In this paper,ultimate load analysis of statically loaded simply supported pretensioned inverted T-beams with circular web openings is presented.Major findings relevant to ultimate load analysis of pretensioned beams with circular web openings are summarized.An attempt has been made to answer the frequently asked questions related to ultimate load analysis on multiple circular web open-ings.It has been shown that the analysis method for pretensioned beams with multiple large circular web openings can be further simplified without sacrificing rationality.