The most attractive merit of tunneling carbon nanotube field effect transistors(T-CNFETs) is the ultra-small inverse sub-threshold slope.In order to obtain as small an average sub-threshold slope as possible,several...The most attractive merit of tunneling carbon nanotube field effect transistors(T-CNFETs) is the ultra-small inverse sub-threshold slope.In order to obtain as small an average sub-threshold slope as possible,several effective approaches have been proposed based on a numerical insight into the working mechanism of T-CNFETs:tuning the doping level of source/drain leads,minimizing the quantum capacitance value via tuning the bias condition or increasing the insulator capacitance,and adopting a staircase doping strategy in the drain lead.Non-equilibrium Green's function based simulation results show that all these approaches can contribute to a smaller average inverse sub-threshold slope, which is quite desirable in high-frequency or low-power applications.展开更多
基金supported by the Hi-Tech Research and Development Program of China(No.2009AA01Z114)
文摘The most attractive merit of tunneling carbon nanotube field effect transistors(T-CNFETs) is the ultra-small inverse sub-threshold slope.In order to obtain as small an average sub-threshold slope as possible,several effective approaches have been proposed based on a numerical insight into the working mechanism of T-CNFETs:tuning the doping level of source/drain leads,minimizing the quantum capacitance value via tuning the bias condition or increasing the insulator capacitance,and adopting a staircase doping strategy in the drain lead.Non-equilibrium Green's function based simulation results show that all these approaches can contribute to a smaller average inverse sub-threshold slope, which is quite desirable in high-frequency or low-power applications.