This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this ...Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model.Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model.All these results present a new approach for networked control system analysis and design.展开更多
This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemi...This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.展开更多
In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the ...In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the T-S fuzzy method. Two time-varying quantizers are added in the model. The key analysis steps in the method are to construct an improved interval-delay-dependent Lyapunov functional and to introduce the free-weighting matrix. By making use of the parallel distributed compensation technology and the convexity of the matrix function, the improved criteria of the stabilization and stability are obtained. Simulation experiments show that the parameters of the controllers and quantizers satisfying a certain performance can be obtained by solving a set of LMIs. The application of the nonlinear mass-spring system is provided to show that the proposed method is effective.展开更多
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel...This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel,is developed to address the inherent limitations of both SFSs and the traditional Delphi technique,particularly in uncertain,complex scenarios.In such contexts,the accuracy of expert knowledge and the confidence in their judgments are pivotal considerations.This study provides the fundamental operational principles and aggregation operators associated with SFSs and Z-numbers,encompassing weighted geometric and arithmetic operators alongside fully developed operators tailored for SFZs numbers.Subsequently,a case study and comparative analysis are conducted to illustrate the practicality and effectiveness of the proposed operators and methodologies.Integrating the PHI model with SFZs numbers represents a significant advancement in decision-making frameworks reliant on expert input.Further,this combination serves as a comprehensive tool for decision-makers,enabling them to achieve heightened levels of consensus while concurrently assessing the reliability of expert contributions.The case study results demonstrate the PHI model’s utility in resolving complex decision-making scenarios,showcasing its ability to improve consensus-building processes and enhance decision outcomes.Additionally,the comparative analysis highlights the superiority of the integrated approach over traditional methodologies,underscoring its potential to revolutionize decision-making practices in uncertain environments.展开更多
Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common under...Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common underlying causes.Around 15%of diabetic patients are affected by diabetic foot ulcer in their lifetime.64 million people are affected by diabetics in India and 40000 amputations are done every year.Foot ulcers are evaluated and classified in a systematic and thorough manner to assist in determining the best course of therapy.This paper proposes a novel model which predicts the threat of diabetic foot ulcer using independent agents for various input values and a combination of fuzzy expert systems.The proposed model uses a classification system to distinguish between each fuzzy framework and its parameters.Based on the severity levels necessary prevention,treatment,and medication are recommended.Combining the results of all the fuzzy frameworks derived from its constituent parameters,a risk-specific medication is recommended.The work also has higher accuracy when compared to other related models.展开更多
In many problems,to analyze the process/metabolism behavior,a mod-el of the system is identified.The main gap is the weakness of current methods vs.noisy environments.The primary objective of this study is to present a...In many problems,to analyze the process/metabolism behavior,a mod-el of the system is identified.The main gap is the weakness of current methods vs.noisy environments.The primary objective of this study is to present a more robust method against uncertainties.This paper proposes a new deep learning scheme for modeling and identification applications.The suggested approach is based on non-singleton type-3 fuzzy logic systems(NT3-FLSs)that can support measurement errors and high-level uncertainties.Besides the rule optimization,the antecedent parameters and the level of secondary memberships are also adjusted by the suggested square root cubature Kalmanfilter(SCKF).In the learn-ing algorithm,the presented NT3-FLSs are deeply learned,and their nonlinear structure is preserved.The designed scheme is applied for modeling carbon cap-ture and sequestration problem using real-world data sets.Through various ana-lyses and comparisons,the better efficiency of the proposed fuzzy modeling scheme is verified.The main advantages of the suggested approach include better resistance against uncertainties,deep learning,and good convergence.展开更多
Amoebiasis is a parasitic intestinal infection caused by the highly pathogenic amoeba Entamoeba histolytica.It is spread through person-toperson contact or by eating or drinking food or water contaminated with feces.I...Amoebiasis is a parasitic intestinal infection caused by the highly pathogenic amoeba Entamoeba histolytica.It is spread through person-toperson contact or by eating or drinking food or water contaminated with feces.Its transmission rate depends on the number of cysts present in the environment.The traditional models assumed a homogeneous and contradictory transmission with reality.The heterogeneity of its transmission rate is a significant factor when modeling disease dynamics.The heterogeneity of disease transmission can be described mathematically by introducing fuzzy theory.In this context,a fuzzy SEIR Amoebiasis disease model is considered in this study.The equilibrium analysis and reproductive number are studied with fuzziness.Two numerical schemes forward Euler method and a nonstandard finite difference(NSFD)approach,are developed for the learned model,and the results of numerical simulations are presented.The numerical and simulation results reveal that the proposed NSFD method provides an adequate representation of the dynamics of the disease despite the uncertainty and heterogeneity.Moreover,the obtained method generates plausible predictions that regulators can use to support decision-making to design and develop control strategies.展开更多
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t...In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.展开更多
Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.T...Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.展开更多
Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted con...Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted container to swing during the transfer operation,the swing motion may be dangerously large and the operation must be stopped.In order to reduce payload pendulation of ship-mounted crane,nonlinear dynamics of ship-mounted crane is derived and a control method using T-S fuzzy model is proposed.Simulation results are given to illustrate the validity of the proposed design method and pendulation of ship-mounted crane is reduced significantly.展开更多
A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th...A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.展开更多
In heating, ventilating and air-conditioning (HVAC) systems, there exist severe nonlinearity, time-varying nature, disturbances and uncertainties. A new predictive functional control based on Takagi-Sugeno (T-S) f...In heating, ventilating and air-conditioning (HVAC) systems, there exist severe nonlinearity, time-varying nature, disturbances and uncertainties. A new predictive functional control based on Takagi-Sugeno (T-S) fuzzy model was proposed to control HVAC systems. The T-S fuzzy model of stabilized controlled process was obtained using the least squares method, then on the basis of global linear predictive model from T-S fuzzy model, the process was controlled by the predictive functional controller. Especially the feedback regulation part was developed to compensate uncertainties of fuzzy predictive model. Finally simulation test results in HVAC systems control applications showed that the proposed fuzzy model predictive functional control improves tracking effect and robustness. Compared with the conventional PID controller, this control strategy has the advantages of less overshoot and shorter setting time, etc.展开更多
A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model ident...A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model identification. The tracked object is the statistical information of a given target probability density function (PDF), rather than a deterministic signal. Following B-spline approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. Different from the previous related works, the time delay T-S fuzzy models with the exogenous disturbances are applied to identify the nonlinear weighting dynamics. Meanwhile, the generalized PID controller structure and the improved convex linear matrix inequalities (LMI) algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the robust performance, the peak-to-peak measure index is applied to optimize the tracking performance. Simulations are given to demonstrate the efficiency of the proposed approach.展开更多
Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise...Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise especially during high-frequency maneuvers. This paper investigates the use of the robust fuzzy control method for actively reducing pressure ripples for EPS systems. Remarkable progress on steering maneuverability is achieved. The EPS dynamics is described with an eight-order nonlinear state-space model and approximated by a Takagi-Sugeno (T-S) fuzzy model with time-varying delays and external disturbances. A stabilization approach is then presented for nonlinear time-delay systems through fuzzy state feedback controller in parallel distributed compensation (PDC) structure. The closed-loop stability conditions of EPS system with the fuzzy controller are parameterized in terms of the linear matrix inequality (LMI) problem. Simulations and experiments using the proposed robust fuzzy controller and traditional PID controller have been carried out for EPS systems. Both the simulation and experiment results show that the proposed fuzzy controller can reduce the torque ripples and allow us to have a good steering feeling and stable driving.展开更多
In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotica...In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.展开更多
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金National Natural Science Foundation of china(60274014,60574088)
文摘Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model.Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model.All these results present a new approach for networked control system analysis and design.
基金the support of Prince Sultan University for paying the article processing charges(APC)of this publication.
文摘This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.
基金The National Natural Science Foundation of China(No.60474049,60835001)Specialized Research Fund for Doctoral Program of Higher Education(No.20090092120027)
文摘In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the T-S fuzzy method. Two time-varying quantizers are added in the model. The key analysis steps in the method are to construct an improved interval-delay-dependent Lyapunov functional and to introduce the free-weighting matrix. By making use of the parallel distributed compensation technology and the convexity of the matrix function, the improved criteria of the stabilization and stability are obtained. Simulation experiments show that the parameters of the controllers and quantizers satisfying a certain performance can be obtained by solving a set of LMIs. The application of the nonlinear mass-spring system is provided to show that the proposed method is effective.
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
文摘This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel,is developed to address the inherent limitations of both SFSs and the traditional Delphi technique,particularly in uncertain,complex scenarios.In such contexts,the accuracy of expert knowledge and the confidence in their judgments are pivotal considerations.This study provides the fundamental operational principles and aggregation operators associated with SFSs and Z-numbers,encompassing weighted geometric and arithmetic operators alongside fully developed operators tailored for SFZs numbers.Subsequently,a case study and comparative analysis are conducted to illustrate the practicality and effectiveness of the proposed operators and methodologies.Integrating the PHI model with SFZs numbers represents a significant advancement in decision-making frameworks reliant on expert input.Further,this combination serves as a comprehensive tool for decision-makers,enabling them to achieve heightened levels of consensus while concurrently assessing the reliability of expert contributions.The case study results demonstrate the PHI model’s utility in resolving complex decision-making scenarios,showcasing its ability to improve consensus-building processes and enhance decision outcomes.Additionally,the comparative analysis highlights the superiority of the integrated approach over traditional methodologies,underscoring its potential to revolutionize decision-making practices in uncertain environments.
文摘Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common underlying causes.Around 15%of diabetic patients are affected by diabetic foot ulcer in their lifetime.64 million people are affected by diabetics in India and 40000 amputations are done every year.Foot ulcers are evaluated and classified in a systematic and thorough manner to assist in determining the best course of therapy.This paper proposes a novel model which predicts the threat of diabetic foot ulcer using independent agents for various input values and a combination of fuzzy expert systems.The proposed model uses a classification system to distinguish between each fuzzy framework and its parameters.Based on the severity levels necessary prevention,treatment,and medication are recommended.Combining the results of all the fuzzy frameworks derived from its constituent parameters,a risk-specific medication is recommended.The work also has higher accuracy when compared to other related models.
基金supported by the project of the National Social Science Fundation(21BJL052,20BJY020,20BJL127,19BJY090)the 2018 Fujian Social Science Planning Project(FJ2018B067)The Planning Fund Project of Humanities and Social Sciences Research of the Ministry of Education in 2019(19YJA790102),The grant has been received by Aoqi Xu.
文摘In many problems,to analyze the process/metabolism behavior,a mod-el of the system is identified.The main gap is the weakness of current methods vs.noisy environments.The primary objective of this study is to present a more robust method against uncertainties.This paper proposes a new deep learning scheme for modeling and identification applications.The suggested approach is based on non-singleton type-3 fuzzy logic systems(NT3-FLSs)that can support measurement errors and high-level uncertainties.Besides the rule optimization,the antecedent parameters and the level of secondary memberships are also adjusted by the suggested square root cubature Kalmanfilter(SCKF).In the learn-ing algorithm,the presented NT3-FLSs are deeply learned,and their nonlinear structure is preserved.The designed scheme is applied for modeling carbon cap-ture and sequestration problem using real-world data sets.Through various ana-lyses and comparisons,the better efficiency of the proposed fuzzy modeling scheme is verified.The main advantages of the suggested approach include better resistance against uncertainties,deep learning,and good convergence.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups”(Project under Grant Number(RGP.2/116/43)).
文摘Amoebiasis is a parasitic intestinal infection caused by the highly pathogenic amoeba Entamoeba histolytica.It is spread through person-toperson contact or by eating or drinking food or water contaminated with feces.Its transmission rate depends on the number of cysts present in the environment.The traditional models assumed a homogeneous and contradictory transmission with reality.The heterogeneity of its transmission rate is a significant factor when modeling disease dynamics.The heterogeneity of disease transmission can be described mathematically by introducing fuzzy theory.In this context,a fuzzy SEIR Amoebiasis disease model is considered in this study.The equilibrium analysis and reproductive number are studied with fuzziness.Two numerical schemes forward Euler method and a nonstandard finite difference(NSFD)approach,are developed for the learned model,and the results of numerical simulations are presented.The numerical and simulation results reveal that the proposed NSFD method provides an adequate representation of the dynamics of the disease despite the uncertainty and heterogeneity.Moreover,the obtained method generates plausible predictions that regulators can use to support decision-making to design and develop control strategies.
基金supported by the National Science and Technology Council under grants NSTC 112-2221-E-320-002the Buddhist Tzu Chi Medical Foundation in Taiwan under Grant TCMMP 112-02-02.
文摘In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.
文摘Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.
基金work supported by Changwon National University in 2011-2012work partly supported by the second stage of Brain Korea 21 Projects
文摘Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted container to swing during the transfer operation,the swing motion may be dangerously large and the operation must be stopped.In order to reduce payload pendulation of ship-mounted crane,nonlinear dynamics of ship-mounted crane is derived and a control method using T-S fuzzy model is proposed.Simulation results are given to illustrate the validity of the proposed design method and pendulation of ship-mounted crane is reduced significantly.
基金This Project was supported by the National Natural Science Foundation of China (60374037 and 60574036)the Opening Project Foundation of National Lab of Industrial Control Technology (0708008).
文摘A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.
基金This work was supported by Young Scientists Fundamental Research Program of Shandong Province of China (No. 031B5147).
文摘In heating, ventilating and air-conditioning (HVAC) systems, there exist severe nonlinearity, time-varying nature, disturbances and uncertainties. A new predictive functional control based on Takagi-Sugeno (T-S) fuzzy model was proposed to control HVAC systems. The T-S fuzzy model of stabilized controlled process was obtained using the least squares method, then on the basis of global linear predictive model from T-S fuzzy model, the process was controlled by the predictive functional controller. Especially the feedback regulation part was developed to compensate uncertainties of fuzzy predictive model. Finally simulation test results in HVAC systems control applications showed that the proposed fuzzy model predictive functional control improves tracking effect and robustness. Compared with the conventional PID controller, this control strategy has the advantages of less overshoot and shorter setting time, etc.
基金supported by National Natural Science Foundationof China (No. 60472065, No. 60774013).
文摘A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model identification. The tracked object is the statistical information of a given target probability density function (PDF), rather than a deterministic signal. Following B-spline approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. Different from the previous related works, the time delay T-S fuzzy models with the exogenous disturbances are applied to identify the nonlinear weighting dynamics. Meanwhile, the generalized PID controller structure and the improved convex linear matrix inequalities (LMI) algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the robust performance, the peak-to-peak measure index is applied to optimize the tracking performance. Simulations are given to demonstrate the efficiency of the proposed approach.
基金supported Foundation of National Development and Reform Commission of China (No. 2040)
文摘Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise especially during high-frequency maneuvers. This paper investigates the use of the robust fuzzy control method for actively reducing pressure ripples for EPS systems. Remarkable progress on steering maneuverability is achieved. The EPS dynamics is described with an eight-order nonlinear state-space model and approximated by a Takagi-Sugeno (T-S) fuzzy model with time-varying delays and external disturbances. A stabilization approach is then presented for nonlinear time-delay systems through fuzzy state feedback controller in parallel distributed compensation (PDC) structure. The closed-loop stability conditions of EPS system with the fuzzy controller are parameterized in terms of the linear matrix inequality (LMI) problem. Simulations and experiments using the proposed robust fuzzy controller and traditional PID controller have been carried out for EPS systems. Both the simulation and experiment results show that the proposed fuzzy controller can reduce the torque ripples and allow us to have a good steering feeling and stable driving.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60774048,and 60774093)the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127)+1 种基金the Special Grant of Financial Support from China Postdoctoral Science Foundation (Grant No. 200902547)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200801451096)
文摘In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.