This paper deals with the robust admissibility and state feedback stabilization problems for discrete-time T-S fuzzy singular systems with norm-bounded uncertainties.By introducing a new approximation technique,the in...This paper deals with the robust admissibility and state feedback stabilization problems for discrete-time T-S fuzzy singular systems with norm-bounded uncertainties.By introducing a new approximation technique,the initial membership functions are conveniently expressed in piecewiselinear functions with the consideration of the approximation errors.By utilizing the piecewise-linear membership functions,the fuzzy weighting-based Lyapunov function and the use of auxiliary matrices,the admissibility of the systems is determined by examining the conditions at some sample points.The conditions can be reduced into the normal parallel distributed compensation ones by choosing special values of some slack matrices.Furthermore,the authors design the robust state feedback controller to guarantee the closed-loop system to be admissible.Two examples are provided to illustrate the advantage and effectiveness of the proposed method.展开更多
Based on the fuzziness and impreciseness of water environmental system, the fuzzy arithmetic was used to simulate the fuzzy and imprecise relations in modeling river water quality. By defining the parameters of water ...Based on the fuzziness and impreciseness of water environmental system, the fuzzy arithmetic was used to simulate the fuzzy and imprecise relations in modeling river water quality. By defining the parameters of water quality model as symmetrical triangular fuzzy numbers, a two-dimensional fuzzy water quality model for sudden pollutant discharge is established. From the fuzzy model, the pollutant concentrations, corresponding to the specified confidence level of a, can be obtained by means of the a-cut technique and arithmetic operations of triangular fuzzy numbers. Study results reveal that it is feasible in theory and reliable on calculation applying triangular fuzzy numbers to the simulation of river water quality.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61973179 and 61803220in part by the Taishan scholar Special Project Fund under Grant No.TSQN20161026。
文摘This paper deals with the robust admissibility and state feedback stabilization problems for discrete-time T-S fuzzy singular systems with norm-bounded uncertainties.By introducing a new approximation technique,the initial membership functions are conveniently expressed in piecewiselinear functions with the consideration of the approximation errors.By utilizing the piecewise-linear membership functions,the fuzzy weighting-based Lyapunov function and the use of auxiliary matrices,the admissibility of the systems is determined by examining the conditions at some sample points.The conditions can be reduced into the normal parallel distributed compensation ones by choosing special values of some slack matrices.Furthermore,the authors design the robust state feedback controller to guarantee the closed-loop system to be admissible.Two examples are provided to illustrate the advantage and effectiveness of the proposed method.
基金the National Natural Science foundation of China (Grant No. 40672154)the Natural Science Foundation of Anhui Province (Grant No. 050450303).
文摘Based on the fuzziness and impreciseness of water environmental system, the fuzzy arithmetic was used to simulate the fuzzy and imprecise relations in modeling river water quality. By defining the parameters of water quality model as symmetrical triangular fuzzy numbers, a two-dimensional fuzzy water quality model for sudden pollutant discharge is established. From the fuzzy model, the pollutant concentrations, corresponding to the specified confidence level of a, can be obtained by means of the a-cut technique and arithmetic operations of triangular fuzzy numbers. Study results reveal that it is feasible in theory and reliable on calculation applying triangular fuzzy numbers to the simulation of river water quality.