期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Fault detection for nonlinear networked control systems based on fuzzy observer 被引量:6
1
作者 Zhangqing Zhu Xiaocheng Jiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期129-136,共8页
Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont... Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective. 展开更多
关键词 nonlinear networked control system (NNCS) fault detection t-s fuzzy model state observer time-delay.
下载PDF
A Multilayer Recurrent Fuzzy Neural Network for Accurate Dynamic System Modeling 被引量:5
2
作者 柳贺 黄道 《Journal of Donghua University(English Edition)》 EI CAS 2008年第4期373-378,共6页
A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback ... A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback connections in the membership layer and the rule layer.With these feedbacks,the fuzzy sets are time-varying and the temporal problem of dynamic system can be solved well.The parameters of MRFNN are learned by chaotic search(CS)and least square estimation(LSE)simultaneously,where CS is for tuning the premise parameters and LSE is for updating the consequent coefficients accordingly.Results of simulations show the proposed approach is effective for dynamic system modeling with high accuracy. 展开更多
关键词 recurrent neural networks t-s fuzzy model chaotic search least square estimation MODELING
下载PDF
T-S norm FNN controller based on hybrid learning algorithm
3
作者 郭冰洁 李岳明 万磊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期27-32,共6页
Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used... Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used to optimize the parameters of membership functions (MFs) off line,and the neural network was used to adjust the parameters of MFs on line to enhance the response of the controller.Moreover,the latter network was used to adjust the fuzzy rules automatically to reduce the computation of the neural network and improve the robustness and adaptability of the controller,so that the controller can work well ever when the underwater vehicle works in hostile ocean environment.Finally,experiments were carried on " XX" mini autonomous underwater vehicle (min-AUV) in tank.The results showed that this controller has great improvement in response and overshoot,compared with the traditional controllers. 展开更多
关键词 t-s NORM fuzzy neural network UNDERWATER vehicles IMMUNE GENETIC ALGORITHM Hybrid learning ALGORITHM
下载PDF
Robust fuzzy control of Takagi-Sugeno fuzzy neural networks with discontinuous activation functions and time delays
4
作者 Yaonan Wang Xiru Wu Yi Zuo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期473-481,共9页
The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theor... The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results. 展开更多
关键词 delayed neural network global robust asymptotical stability discontinuous neuron activation linear matrix inequality(LMI) Takagi-sugeno(t-s fuzzy model.
下载PDF
Synchronous Control of Complex Networks with Fuzzy Connections
5
作者 Wei Chen Yuanguang Zheng 《Open Journal of Applied Sciences》 2023年第12期2273-2281,共9页
This article is based on the T-S fuzzy control theory and investigates the synchronization control problem of complex networks with fuzzy connections. Firstly, the main stability equation of a complex network system i... This article is based on the T-S fuzzy control theory and investigates the synchronization control problem of complex networks with fuzzy connections. Firstly, the main stability equation of a complex network system is obtained, which can determine the stability of the synchronous manifold. Secondly, the main stable system is fuzzified, and based on fuzzy control theory, the control design of the fuzzified main stable system is carried out to obtain a coupling matrix that enables the complex network to achieve complete synchronization. The numerical analysis results indicate that the control method proposed in this paper can effectively achieve synchronization control of complex networks, while also controlling the transition time for the network to achieve synchronization. 展开更多
关键词 t-s fuzzy Control SYNCHRONIZATION Complex network
下载PDF
A new neural network model for the feedback stabilization of nonlinear systems
6
作者 Mei-qin LIU Sen-lin ZHANG Gang-feng YAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第8期1015-1023,共9页
A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constrain... A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constraints are shown to be a set of linear matrix inequalities (LMIs), which can be easily solved by the MATLAB LMI Control Toolbox to determine the control law. Most recurrent neural networks (including the chaotic neural network) and nonlinear systems modeled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be stabilization controllers synthesized in the framework of a unified SNNM. Finally, three numerical examples are provided to illustrate the design developed in this paper. 展开更多
关键词 Standard neural network model (SNNM) Linear matrix inequality (LMI) Nonlinear control Asymptotic stability Chaotic cellular neural network Takagi and Sugeno t-s fuzzy model
下载PDF
基于BIM技术的地铁深基坑安全风险预警应用研究 被引量:9
7
作者 裴巧玲 于媛 庄辛宇 《施工技术》 CAS 2021年第12期4-6,共3页
为及时准确辨识地铁深基坑风险信息、动态控制施工过程,针对现场管理中信息传递不及时、人为主观决策等问题,提出基于BIM的安全风险预警框架。以成都地铁深基坑为研究对象,创建基于BIM的深基坑风险预警模型。对基坑BIM信息模型进行模拟... 为及时准确辨识地铁深基坑风险信息、动态控制施工过程,针对现场管理中信息传递不及时、人为主观决策等问题,提出基于BIM的安全风险预警框架。以成都地铁深基坑为研究对象,创建基于BIM的深基坑风险预警模型。对基坑BIM信息模型进行模拟后,辨析项目隐含的风险信息,并进行4D模拟施工,对可能发生的风险作出预判并制订预防方案。最后界定施工事故险情及风险信息量化指标,根据T-S模糊神经网络融合模型确定风险预警值,在BIM界面中加以标识反馈,实现基坑安全风险立体控制。 展开更多
关键词 地铁 基坑 建筑信息模型 风险 预警 t-s模糊神经网络
下载PDF
A research on an energy-saving software for pumping units based on FNN intelligent control
8
作者 丁宝 齐维贵 王凤平 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第3期240-244,共5页
An energy-saving scheme for pumping units via intermission start-stop performance is proposed. Because of the complexity of the oil extraction process, Fuzzy Neural Network (FNN) intelligent control is adopted. The st... An energy-saving scheme for pumping units via intermission start-stop performance is proposed. Because of the complexity of the oil extraction process, Fuzzy Neural Network (FNN) intelligent control is adopted. The structure of the Takagi-Sugeno (T-S) fuzzy neural network model is introduced and modified. FNNs are trained with sample information from oil fields and expert knowledge. Finally, pumping unit energy-saving FNN software, which cuts down power costs substantially, is presented. 展开更多
关键词 rocker pumping unit t-s fuzzy system fuzzy neural network BP algorithm
下载PDF
Indoor Environment Quality Monitoring and Evaluation System Based on LoRa Communication
9
作者 Jiawen Jiang Wenzhong Zhu +1 位作者 Xinhuang Xie Qikang Wei 《Journal of Computer and Communications》 2022年第4期72-86,共15页
Indoor environmental quality has always been the focus of people’s long-term attention. How to monitor the indoor environmental level conveniently and accurately is a problem that people pay attention to now. After r... Indoor environmental quality has always been the focus of people’s long-term attention. How to monitor the indoor environmental level conveniently and accurately is a problem that people pay attention to now. After research, an indoor environment level monitoring system based on LoRa communication is designed. The system is mainly divided into two parts, the detection node, and the monitoring terminal. Temperature, humidity, light intensity, noise, formal-dehyde, and carbon dioxide are detected through the node with STM32F103ZET6 microcontroller as the controller;the data is sent to the monitoring terminal for display through LoRa communication. At the same time, the T-S fuzzy neural network (TSFNN) is improved by the particle swarm optimization (PSO) algorithm to classify the indoor environment quality level. Experimental test: the total error of the improved TSFNN model test set is reduced by 8.6007. The system can monitor the indoor environment level objectively and reliably, and has high practical value. 展开更多
关键词 LoRa Communication STM32 t-s fuzzy Neural network Particle Swarm Optimization Indoor Environmental Quality Evaluation
下载PDF
Adaptive Takagi-Sugeno fuzzy model and model predictive control of pneumatic artificial muscles 被引量:1
10
作者 XIA XiuZe CHENG Long 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第10期2272-2280,共9页
Pneumatic artificial muscles(PAMs)usually exhibit strong hysteresis nonlinearity and time-varying features that bring PAMs modeling and control difficulties.To characterize the hysteresis relation between PAMs’displa... Pneumatic artificial muscles(PAMs)usually exhibit strong hysteresis nonlinearity and time-varying features that bring PAMs modeling and control difficulties.To characterize the hysteresis relation between PAMs’displacement and fluid pressure,a long short term memory(LSTM)neural network model and an adaptive Takagi-Sugeno(T-S)fuzzy model are proposed.Experiments show that both models perform well under the load free conditions,and the adaptive T-S Fuzzy model can furtherly adapt to the change of load with the online adaptation ability.With the concise expression and satisfactory performance of the adaptive T-S Fuzzy model,a model predictive controller is designed and tested.Experiments show that the model predictive controller has a good performance on tracking the given references. 展开更多
关键词 pneumatic artificial muscles adaptive t-s fuzzy model LSTM neural network model model predictive control
原文传递
Unified stabilizing controller synthesis approach for discrete-time intelligent systems with time delays by dynamic output feedback 被引量:5
11
作者 LIU MeiQin 《Science in China(Series F)》 2007年第4期636-656,共21页
A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuz... A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuzzy models. The SNNM is composed of a discrete-time linear dynamic system and a bounded static nonlinear operator. Based on the global asymptotic stability analysis of the SNNMs, linear and nonlinear dynamic output feedback controllers are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based (or fuzzy) discrete-time intelligent systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Three application examples show that the SNNMs not only make controller synthesis of neural-network-based (or fuzzy) discrete-time intelligent systems much easier, but also provide a new approach to the synthesis of the controllers for the other type of nonlinear systems. 展开更多
关键词 standard neural network model (SNNM) linear matrix inequality (LMI) intelligent system asymptotic stability output feedback control time delay DISCRETE-TIME chaotic neural network Takagi and Sugeno t-s fuzzy model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部