A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw...A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.展开更多
Impact pile driving is an interesting technique for the construction of deep foundations from a practical and economical point of view.However,the generalization of this technique can be restricted due to the excessiv...Impact pile driving is an interesting technique for the construction of deep foundations from a practical and economical point of view.However,the generalization of this technique can be restricted due to the excessive vibration levels that can be generated,which can be especially problematic in residential areas.However,different mitigation measures can be applied to prevent excessive vibration levels inside buildings located near construction sites.To compare its efficiency through a numerical prediction tool,two experimental test sites are first presented and characterized.From the results obtained,it was found that the construction of an open trench near the impact source can be used as an efficient mitigation measure to reduce the maximum vibration levels evaluated in this study.展开更多
Excitation parameter preferences are key factors a ecting the performance of magnetic frequency mixing detection.A uniform experimental design method was used to analyze this influence.Using fuzzy theory,a comprehensi...Excitation parameter preferences are key factors a ecting the performance of magnetic frequency mixing detection.A uniform experimental design method was used to analyze this influence.Using fuzzy theory,a comprehensive model is established for evaluating the e ect of magnetic frequency mixing.A polynomial is selected as the regression function to express explicitly the correlation between the excitation parameters and the frequency-mixing e ect.The excitation parameters were then optimized using genetic algorithm.Magnetic frequency mixing experiments were conducted to measure the surface hardness of some ferromagnetic materials.Frequency mixing is further enhanced under the optimal settings,resulting in an improvement in the measurement sensitivity.The results of this study support the application of the magnetic frequency mixing technique in non-destructive testing.展开更多
In recent years, natural gas hydrate has attracted increasing attention worldwide as a potential alternative energy source due to its attributes of wide distribution, large reserves, and low carbon. Since the acoustic...In recent years, natural gas hydrate has attracted increasing attention worldwide as a potential alternative energy source due to its attributes of wide distribution, large reserves, and low carbon. Since the acoustic characteristics of hydratebearing reservoirs clearly differ from those of adjacent formations, an acoustic approach, using seismic and acoustic logging, is one of the most direct, effective and widely used methods among the identification and characterization techniques for hydrate reservoir exploration. This review of research on the influence of hydrate(content and distribution) on the acoustic properties(velocity and attenuation) of sediments in the past two decades includes experimental studies based on different hydrate formation methods and measurements, as well as rock physics models. The main problems in current research are also pointed out and future prospects discussed.展开更多
The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryo...The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryogenic field and magnetic field. The response to a temperature and strain change of coated-soft polymeric FBGs is tested by comparing with those of coated-metal FBGs. The results indicate that the coated-soft polymeric FBGs can freely detect temperature and thermal strain, their At variable magnetic field, the tested results indicate accuracy and repeatability are also discussed in detail. that the cross-coupling effects of FBGs with different matrixes are not negligible to measure electromagnetic strain during fast excitation. The present results are expected to be able to provide basis measurements on the strain of pulsed superconducting magnet/cable (cable- around-conduit conductors, cable-in-conduit conductors), independently or utilized together with other strain measurement methods.展开更多
Fractures in oil and gas reservoirs have been the topic of many studies and have attracted reservoir research all over the world. Because of the complexities of the fractures, it is difficult to use fractured reservoi...Fractures in oil and gas reservoirs have been the topic of many studies and have attracted reservoir research all over the world. Because of the complexities of the fractures, it is difficult to use fractured reservoir core samples to investigate true underground conditions. Due to the diversity of the fracture parameters, the simulation and evaluation of fractured rock in the laboratory setting is also difficult. Previous researchers have typically used a single material, such as resin, to simulate fractures. There has been a great deal of simplifying of the materials and conditions, which has led to disappointing results in application. In the present study, sandstone core samples were selected and sectioned to simulate fractures, and the changes of the compressional and shear waves were measured with the gradual increasing of the fracture width. The effects of the simulated fracture width on the acoustic wave velocity and amplitude were analyzed. Two variables were defined: H represents the amplitude attenuation ratio of the compressional and shear wave, and x represents the transit time difference value of the shear wave and compressional wave divided by the transit time of the compressional wave. The effect of fracture width on these two physical quantities was then analyzed. Finally, the methods of quantitative evaluation for fracture width with H and x were obtained. The experimental results showed that the rock fractures linearly reduced the velocity of the shear and compressional waves. The effect of twin fractures on thecompressional velocity was almost equal to that of a single fracture which had the same fracture width as the sum of the twin fractures. At the same time, the existence of fractures led to acoustic wave amplitude attenuations, and the compressional wave attenuation was two times greater than that of the shear wave. In this paper, a method was proposed to calculate the fracture width with x and H, then this was applied to the array acoustic imaging logging data.The application examples showed that the calculated fracture width could be compared with fractures on the electric imaging logs. These rules were applied in the well logs to effectively evaluate the fractures, under the case of no image logs, which had significance to prospecting and development of oil and gas in fractured reservoirs.展开更多
One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state...One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state models. In such cases, the contribution of intrinsic uncertainty becomes important and cannot be ignored. A detailed analysis of the intrinsic uncertainty of the aluminum-iron impedance-match experiment based on the measurement of velocities is presented. The influence of mirror-reflection approximation on the shocked pressure of Fe and intrinsic uncertainties from the equation of state uncertainty of standard material are quantified, Furthermore, the comparison of intrinsic uncertainties of four different experimental approaches is presented. It is shown that, compared with other approaches including the most widely used approach which relies on the measurements of the shock velocities of AI and Fe, the approach which relies on the measurement of the particle velocity of Al and the shock velocity of Fe has the smallest intrinsic uncertainty, which would promote such work to significantly improve the diagnostics precision in such an approach.展开更多
An active measurement method and its principle was introduced consideringthe low success rate,special difficulty,and long measurement time of the direct gas pressuremeasurement currently used in coal roadways.The tech...An active measurement method and its principle was introduced consideringthe low success rate,special difficulty,and long measurement time of the direct gas pressuremeasurement currently used in coal roadways.The technology of drilling,boreholesealing depth,borehole sealing length,sealing control of the measuring process,compensatorycomputation of gas loss quantity and other key techniques were discussed.Finally,based on the latest instrument the authors developed,a series of experiments of directgas pressure measurement in the coal roadways of the Jincheng and Tongchuanmine district,were carried out.The experimental results show that active gas pressuremeasurement technique has advantages as follows:(1) the application scope of direct gaspressure measurement technique is wide and it does not have the restriction of coalhardness,coal seam fissure and other conditions;(2) the measured results are credible,which can be tested by the same gas pressure value acquired from a different borehole inthe same place;(3) the measurement process is convenient and quick,it takes about 2 to3 days to acquire the gas pressure value in a coal seam.展开更多
Experimental and numerical simulations were undertaken to estimate the effects of imperfect conditions on stress waves in split Hopkinson pressure bar (SHPB) experiments. The photonic Doppler velocimetry (PDV) mea...Experimental and numerical simulations were undertaken to estimate the effects of imperfect conditions on stress waves in split Hopkinson pressure bar (SHPB) experiments. The photonic Doppler velocimetry (PDV) measurement results show that the rise and fall times of an incident wave increases with an increasing inclination angle; also, the fluctuations of the incident wave disappear gradually with the increase of inclination angle. The following characteristics for various defects in the SHPB were obtained by numerical simulation: (1) the influence of a curved bar was negligible; (2) misalignment modestly affects the fluctuation characteristics, and bending waves were generated at this condition; (3) inclination and indentation of the impact end- surface had a great impact on the incident waves, and both of them increase the rise time of the incident wave by increasing the degree of defects. In view of the results, misalignment, inclination, and indentation in SHPB experiments should be minimized.展开更多
The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the runn...The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the running train. This problem is studied using theoretical analysis, numerical simulation, and experimental study. In the train-bridge dynamic interaction system proposed in this paper, the train vehicle model is established by the rigid-body dynamics method, the bridge model is established by the finite element method, and the wheel/rail vertical and lateral interaction are simulated by the corresponding assumption and the Kalker linear creep theory, respectively. Track irregularity, structure deformation, wind load, collision load, structural damage, foundation scouring, and earthquake action are regarded as the excitation for the system. The train-bridge dynamic interaction system is solved by inter-history iteration. A case study of the dynamic response of a CRH380BL high-speed train running through a standard-design bridge in China is discussed. The dynamic responses of the vehicle and of the bridge subsystems are obtained for speeds ranging from 200 km-b-1 to 400 km.h-1, and the vibration mechanism are analyzed.展开更多
Recent progress in nuclear data measurement for ADS at Institute of Modern Physics is reviewed briefly.Based on the cooler storage ring of the Heavy Ion Research Facility in Lanzhou, nuclear data terminal was establis...Recent progress in nuclear data measurement for ADS at Institute of Modern Physics is reviewed briefly.Based on the cooler storage ring of the Heavy Ion Research Facility in Lanzhou, nuclear data terminal was established.The nuclear data measurement facility for the ADS spallation target has been constructed, which provides a very important platform for the experimental measurements of spallation reactions. A number of experiments have been conducted in the nuclear data terminal. A Neutron Time-of-Flight(NTOF)spectrometer was developed for the study of neutron production from spallation reactions related to the ADS project.The experiments of 400 MeV/u ^(16)O bombarded on a tungsten target were presented using a NTOF spectrometer.Neutron yields for 250 MeV protons incident on a thick grain-made tungsten target and a thick solid lead target have been measured using the water-bath neutron activation method. Spallation residual productions were studied by bombarding W and Pb targets with a 250 MeV proton beam using the neutron activation method. Benchmarking of evaluated nuclear data libraries was performed for D-T neutrons on ADS relevant materials by using the benchmark experimental facility at the China Institute of Atomic Energy.展开更多
In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed thr...In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.展开更多
Adopting "simultaneous transmitting, simultaneous receiving" operational scheme, instantaneous polarization radar (IPR) can measure target polarization scattering matrix (PSM) using only once target echoes in tw...Adopting "simultaneous transmitting, simultaneous receiving" operational scheme, instantaneous polarization radar (IPR) can measure target polarization scattering matrix (PSM) using only once target echoes in two orthogonal polarization channels. Firstly, signal model and signal process are advanced under narrowband condition. Secondly, measurement performances of two typical IPR waveforms are analyzed in detail. At last, field experiments are carried out using X-band IPR system designed by National University of Defense Technology (NUDT), China. Compared with results obtained by alternative polarization measurement scheme, following results can be obtained: the difference of relative amplitude measurement results is smaller than 2 dB and that of relative phase measurement results is smaller than 10?, verifying the validity of instantaneous polarization measurement scheme.展开更多
The axial and tangential velocities of gas and particle phases and particle concentration for turbulent swirling and recirculating gas-particle (simulating gas-droplet) flows in a cold model of a dual-inlet sudden-exp...The axial and tangential velocities of gas and particle phases and particle concentration for turbulent swirling and recirculating gas-particle (simulating gas-droplet) flows in a cold model of a dual-inlet sudden-expansion combustor with partially tangential central tubes, proposed by the present authors, were measured by using a 2-D LDV system and a laser optic fiber system combined with a sampling probe. The results show that there are both gas and particle strongly reverse flows and swirling flows in the head part of the combustor. The velocity slip between gas and particle phases is remarkable. The particle concentration is higher near the wall and lower near the axis. There are two peaks in the concentration profiles near the inlet tubes. The above-obtained flow characteristics are favorable to ignition, flame stabilization and combustion. The results can also be used to validate the numerical modeling.展开更多
The vibrations behavior analysis is an essential step in the mechanical design process.Several methods such as analytical modelling,numerical analysis and experimental measurements can be used for this purpose.However...The vibrations behavior analysis is an essential step in the mechanical design process.Several methods such as analytical modelling,numerical analysis and experimental measurements can be used for this purpose.However,the numerical or analytical models should be validated through experimental measurements,usually expensive.This paper introduces an inexpensive smartphone as an accurate,non-intrusive vibrations’behavior measurement device.An experimental measurement procedure based on the video processing method is presented.This procedure allows the measurement of the natural frequencies and the mode shapes of a vibrating structure,simply by using a smartphone built-in camera.The experimental results are compared to those obtained using an accurate analytical model,where the natural frequencies error is less than 2.7%and the modal assurance criterion is higher than 0.89.In order to highlight the obtained results,a comparison has been done using a high quality and high frame per second(fps)camera-based measurement of material properties.Since the highest recovered natural frequency and its associated mode shape depend on the frame per second rate of the recorded video,this procedure has great potential in low frequencies problems such as for big structures like buildings and bridges.This validated technique re-introduces the personal smartphone as an accurate inexpensive non-contacting vibration measurement tool.展开更多
The article aims to study the possible correlation between the presence and intensity of rainfall X- and T-radiation and low energy neutrons at one specific location in S[io Jos6 dos Campos, SP, Brazil. Monitoring of ...The article aims to study the possible correlation between the presence and intensity of rainfall X- and T-radiation and low energy neutrons at one specific location in S[io Jos6 dos Campos, SP, Brazil. Monitoring of these parameters was carried out from end February to half of June 2013 just in Physics Department of ITA (Technological Institute of Aeronautics). By correlating the data of measurements of intensity of X and ),-radiations with the rainfall it has been found that this meteorological parameter had a significant influence on the background of these radiation profile. A possible reason for this fact is associated with the presence of radon gas in the environment that is dragged to the surface during the occurrences of local rainfall. In relation neutrons, it was possible to note that the rainfall has small influence on this parameter measures.展开更多
As one part of the National Highway Network Planning in China, the Qinghai-Tibet Expressway (QTE) from Golmud to Lhasa will be built in the interior of the Qinghai-Tibet Plateau (QTP) across about 630 km of permaf...As one part of the National Highway Network Planning in China, the Qinghai-Tibet Expressway (QTE) from Golmud to Lhasa will be built in the interior of the Qinghai-Tibet Plateau (QTP) across about 630 km of permafrost lands. Due to the problematic interactions between the engineering foundations and permafrost, the frozen-soil roadbed of the QTE will be subjected to the more intense thermal disturbances due to the wider black surface. The design and construction for long-term thermal and mechanical stability will face more severe challenges than those in ordinary highways and railways in the same region. In order to provide scientific support for cold regions engineering practices, the QTE Experimental Demonstration Project (EDP) was constructed in situ in the vicinity of the Beilu'he Permafrost Station in the interior of the QTP. In this paper, the anticipated problems of the proposed QTE project are enumerated, and the structures of the test sections for QTE EDP are described. Through numerical simulations, it was found that the heat transfer processes occurring in each specific road structure are significantly different. The heat accumulation in the highway embankment is mainly due to the black bituminous pavement, but in the railway embankment with its gravel surfaces, it mainly comes from the side slopes. As a result, the net heat accumulation of the highway embankment is three times higher than that in the railway. In expressway, the heat accumulation is further increased because of the wider pavement so that significantly more heat will be accumulated in the roadbed beneath the centerline area. Thus, the thermal stability of the fro- zen-soil roadbed and the underlying permafrost of the QTE can be seriously threatened without proper engineering measures protection against thawing. Based on research and practical experiences from the operating Qinghai-Tibet Railway (QTR) and the Qinghai-Tibet Highway (QTH), combined with the predicted characteristics of heat transfer in an expressway embankment, nine kinds of engineering measures for mitigating the thaw settlement of foundation soils through the cooling the roadbed soils were built and are being tested in the EDP. The design of the monitoring system for the EDP and the observed parameters were also described.展开更多
To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to estab...To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to establish a method for measuring the partial phase flow rate of oil-water two-phase stratified flow in horizontal wells. An experimental work was performed in horizontal oil-water two-phase flow simulation well using combination production logging tool including mini-capacitance sensor and mini-spinner. The combination tool provides a recording of holdup and velocity profiles at five different heights of the borehole cross-section. The effect of total flow rate and water-cut on the response of spinner and capacitive sensor at five measured positions were investigated. The capacitance water holdup interpolation imaging algorithm was used to determine the local fluid property and oil-water interface height, and the measured local fluid speed was combined with the numerical simulation result to establish an optimal calculation model for obtaining the partial phase flow rate of the oil-water two-phase stratified flow in the horizontal well. The calculated flow rates of five measured points are basically consistent with the experimental data, the total flow rate and water holdup from calculation are in agreement with the set values in the experiment too, suggesting that the method has high accuracy.展开更多
基金Supported By Open Fund of Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),YQZC202309.
文摘A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.
基金Programmatic funding-UIDP/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES(PIDDAC)Project PTDC/ECI-CON/29634/2017-POCI-01-0145-FEDER-029634-funded by FEDER funds through COMPETE2020-Programa Operacional Competitividade e Internacionalização(POCI)by national funds(PIDDAC)through FCT/MCTES。
文摘Impact pile driving is an interesting technique for the construction of deep foundations from a practical and economical point of view.However,the generalization of this technique can be restricted due to the excessive vibration levels that can be generated,which can be especially problematic in residential areas.However,different mitigation measures can be applied to prevent excessive vibration levels inside buildings located near construction sites.To compare its efficiency through a numerical prediction tool,two experimental test sites are first presented and characterized.From the results obtained,it was found that the construction of an open trench near the impact source can be used as an efficient mitigation measure to reduce the maximum vibration levels evaluated in this study.
基金Supported by National Key Research and Development Program of China(Grant No.2017YFF0209703)National Natural Science Foundation of China(Grant Nos.11972053,11527801).
文摘Excitation parameter preferences are key factors a ecting the performance of magnetic frequency mixing detection.A uniform experimental design method was used to analyze this influence.Using fuzzy theory,a comprehensive model is established for evaluating the e ect of magnetic frequency mixing.A polynomial is selected as the regression function to express explicitly the correlation between the excitation parameters and the frequency-mixing e ect.The excitation parameters were then optimized using genetic algorithm.Magnetic frequency mixing experiments were conducted to measure the surface hardness of some ferromagnetic materials.Frequency mixing is further enhanced under the optimal settings,resulting in an improvement in the measurement sensitivity.The results of this study support the application of the magnetic frequency mixing technique in non-destructive testing.
基金the financial support provided by the National Natural Science Foundation of China(Grant Nos.42174133 and 41676032)China Geological Survey(Grant No.DD20190234)。
文摘In recent years, natural gas hydrate has attracted increasing attention worldwide as a potential alternative energy source due to its attributes of wide distribution, large reserves, and low carbon. Since the acoustic characteristics of hydratebearing reservoirs clearly differ from those of adjacent formations, an acoustic approach, using seismic and acoustic logging, is one of the most direct, effective and widely used methods among the identification and characterization techniques for hydrate reservoir exploration. This review of research on the influence of hydrate(content and distribution) on the acoustic properties(velocity and attenuation) of sediments in the past two decades includes experimental studies based on different hydrate formation methods and measurements, as well as rock physics models. The main problems in current research are also pointed out and future prospects discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11302225,11121202 and 11327802the National Key Project of Magneto-Constrained Fusion Energy Development Program under Grant No 2013GB110002the Postdoctoral Science Foundation of China under Grant No 2014M560820
文摘The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryogenic field and magnetic field. The response to a temperature and strain change of coated-soft polymeric FBGs is tested by comparing with those of coated-metal FBGs. The results indicate that the coated-soft polymeric FBGs can freely detect temperature and thermal strain, their At variable magnetic field, the tested results indicate accuracy and repeatability are also discussed in detail. that the cross-coupling effects of FBGs with different matrixes are not negligible to measure electromagnetic strain during fast excitation. The present results are expected to be able to provide basis measurements on the strain of pulsed superconducting magnet/cable (cable- around-conduit conductors, cable-in-conduit conductors), independently or utilized together with other strain measurement methods.
基金supported in part by the National Natural Science Foundation of China (Grant No. 41174096)the Graduate Innovation Fund of Jilin University (Project No. 2016103)
文摘Fractures in oil and gas reservoirs have been the topic of many studies and have attracted reservoir research all over the world. Because of the complexities of the fractures, it is difficult to use fractured reservoir core samples to investigate true underground conditions. Due to the diversity of the fracture parameters, the simulation and evaluation of fractured rock in the laboratory setting is also difficult. Previous researchers have typically used a single material, such as resin, to simulate fractures. There has been a great deal of simplifying of the materials and conditions, which has led to disappointing results in application. In the present study, sandstone core samples were selected and sectioned to simulate fractures, and the changes of the compressional and shear waves were measured with the gradual increasing of the fracture width. The effects of the simulated fracture width on the acoustic wave velocity and amplitude were analyzed. Two variables were defined: H represents the amplitude attenuation ratio of the compressional and shear wave, and x represents the transit time difference value of the shear wave and compressional wave divided by the transit time of the compressional wave. The effect of fracture width on these two physical quantities was then analyzed. Finally, the methods of quantitative evaluation for fracture width with H and x were obtained. The experimental results showed that the rock fractures linearly reduced the velocity of the shear and compressional waves. The effect of twin fractures on thecompressional velocity was almost equal to that of a single fracture which had the same fracture width as the sum of the twin fractures. At the same time, the existence of fractures led to acoustic wave amplitude attenuations, and the compressional wave attenuation was two times greater than that of the shear wave. In this paper, a method was proposed to calculate the fracture width with x and H, then this was applied to the array acoustic imaging logging data.The application examples showed that the calculated fracture width could be compared with fractures on the electric imaging logs. These rules were applied in the well logs to effectively evaluate the fractures, under the case of no image logs, which had significance to prospecting and development of oil and gas in fractured reservoirs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11305156 and 11305159
文摘One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state models. In such cases, the contribution of intrinsic uncertainty becomes important and cannot be ignored. A detailed analysis of the intrinsic uncertainty of the aluminum-iron impedance-match experiment based on the measurement of velocities is presented. The influence of mirror-reflection approximation on the shocked pressure of Fe and intrinsic uncertainties from the equation of state uncertainty of standard material are quantified, Furthermore, the comparison of intrinsic uncertainties of four different experimental approaches is presented. It is shown that, compared with other approaches including the most widely used approach which relies on the measurements of the shock velocities of AI and Fe, the approach which relies on the measurement of the particle velocity of Al and the shock velocity of Fe has the smallest intrinsic uncertainty, which would promote such work to significantly improve the diagnostics precision in such an approach.
基金Supported by National Basic Research Program of China(2005cb221504)National Key Technologies R & D Program of China(2006BAK03B01)
文摘An active measurement method and its principle was introduced consideringthe low success rate,special difficulty,and long measurement time of the direct gas pressuremeasurement currently used in coal roadways.The technology of drilling,boreholesealing depth,borehole sealing length,sealing control of the measuring process,compensatorycomputation of gas loss quantity and other key techniques were discussed.Finally,based on the latest instrument the authors developed,a series of experiments of directgas pressure measurement in the coal roadways of the Jincheng and Tongchuanmine district,were carried out.The experimental results show that active gas pressuremeasurement technique has advantages as follows:(1) the application scope of direct gaspressure measurement technique is wide and it does not have the restriction of coalhardness,coal seam fissure and other conditions;(2) the measured results are credible,which can be tested by the same gas pressure value acquired from a different borehole inthe same place;(3) the measurement process is convenient and quick,it takes about 2 to3 days to acquire the gas pressure value in a coal seam.
基金National Natural Science Foundation of China (Grants 11402277 and 11332011) for financial support
文摘Experimental and numerical simulations were undertaken to estimate the effects of imperfect conditions on stress waves in split Hopkinson pressure bar (SHPB) experiments. The photonic Doppler velocimetry (PDV) measurement results show that the rise and fall times of an incident wave increases with an increasing inclination angle; also, the fluctuations of the incident wave disappear gradually with the increase of inclination angle. The following characteristics for various defects in the SHPB were obtained by numerical simulation: (1) the influence of a curved bar was negligible; (2) misalignment modestly affects the fluctuation characteristics, and bending waves were generated at this condition; (3) inclination and indentation of the impact end- surface had a great impact on the incident waves, and both of them increase the rise time of the incident wave by increasing the degree of defects. In view of the results, misalignment, inclination, and indentation in SHPB experiments should be minimized.
基金Acknowledgements This research is sponsored by the Major State Basic Research Development Program of China ("973" Program) (2013CB036203), the 111 Project (B13002), and the National Natural Science Foundation of China (U1434205, U1434210, 51338001 ).
文摘The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the running train. This problem is studied using theoretical analysis, numerical simulation, and experimental study. In the train-bridge dynamic interaction system proposed in this paper, the train vehicle model is established by the rigid-body dynamics method, the bridge model is established by the finite element method, and the wheel/rail vertical and lateral interaction are simulated by the corresponding assumption and the Kalker linear creep theory, respectively. Track irregularity, structure deformation, wind load, collision load, structural damage, foundation scouring, and earthquake action are regarded as the excitation for the system. The train-bridge dynamic interaction system is solved by inter-history iteration. A case study of the dynamic response of a CRH380BL high-speed train running through a standard-design bridge in China is discussed. The dynamic responses of the vehicle and of the bridge subsystems are obtained for speeds ranging from 200 km-b-1 to 400 km.h-1, and the vibration mechanism are analyzed.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences ADS Project(No.XDA03030200)the National Natural Science Foundation of China(No.91426301)
文摘Recent progress in nuclear data measurement for ADS at Institute of Modern Physics is reviewed briefly.Based on the cooler storage ring of the Heavy Ion Research Facility in Lanzhou, nuclear data terminal was established.The nuclear data measurement facility for the ADS spallation target has been constructed, which provides a very important platform for the experimental measurements of spallation reactions. A number of experiments have been conducted in the nuclear data terminal. A Neutron Time-of-Flight(NTOF)spectrometer was developed for the study of neutron production from spallation reactions related to the ADS project.The experiments of 400 MeV/u ^(16)O bombarded on a tungsten target were presented using a NTOF spectrometer.Neutron yields for 250 MeV protons incident on a thick grain-made tungsten target and a thick solid lead target have been measured using the water-bath neutron activation method. Spallation residual productions were studied by bombarding W and Pb targets with a 250 MeV proton beam using the neutron activation method. Benchmarking of evaluated nuclear data libraries was performed for D-T neutrons on ADS relevant materials by using the benchmark experimental facility at the China Institute of Atomic Energy.
基金Project(51675100)supported by the National Natural Science Foundation of ChinaProject(2016ZX04004008)supported by the National Numerical Control Equipment Major Project of ChinaProject(6902002116)supported by the Foundation of Certain Ministry of China
文摘In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.
基金supported by the National Natural Science Foundationof China (60736006 60802078)
文摘Adopting "simultaneous transmitting, simultaneous receiving" operational scheme, instantaneous polarization radar (IPR) can measure target polarization scattering matrix (PSM) using only once target echoes in two orthogonal polarization channels. Firstly, signal model and signal process are advanced under narrowband condition. Secondly, measurement performances of two typical IPR waveforms are analyzed in detail. At last, field experiments are carried out using X-band IPR system designed by National University of Defense Technology (NUDT), China. Compared with results obtained by alternative polarization measurement scheme, following results can be obtained: the difference of relative amplitude measurement results is smaller than 2 dB and that of relative phase measurement results is smaller than 10?, verifying the validity of instantaneous polarization measurement scheme.
基金F oundation of Astronautical Sci. & Tech.China(Project 90 -16 )
文摘The axial and tangential velocities of gas and particle phases and particle concentration for turbulent swirling and recirculating gas-particle (simulating gas-droplet) flows in a cold model of a dual-inlet sudden-expansion combustor with partially tangential central tubes, proposed by the present authors, were measured by using a 2-D LDV system and a laser optic fiber system combined with a sampling probe. The results show that there are both gas and particle strongly reverse flows and swirling flows in the head part of the combustor. The velocity slip between gas and particle phases is remarkable. The particle concentration is higher near the wall and lower near the axis. There are two peaks in the concentration profiles near the inlet tubes. The above-obtained flow characteristics are favorable to ignition, flame stabilization and combustion. The results can also be used to validate the numerical modeling.
文摘The vibrations behavior analysis is an essential step in the mechanical design process.Several methods such as analytical modelling,numerical analysis and experimental measurements can be used for this purpose.However,the numerical or analytical models should be validated through experimental measurements,usually expensive.This paper introduces an inexpensive smartphone as an accurate,non-intrusive vibrations’behavior measurement device.An experimental measurement procedure based on the video processing method is presented.This procedure allows the measurement of the natural frequencies and the mode shapes of a vibrating structure,simply by using a smartphone built-in camera.The experimental results are compared to those obtained using an accurate analytical model,where the natural frequencies error is less than 2.7%and the modal assurance criterion is higher than 0.89.In order to highlight the obtained results,a comparison has been done using a high quality and high frame per second(fps)camera-based measurement of material properties.Since the highest recovered natural frequency and its associated mode shape depend on the frame per second rate of the recorded video,this procedure has great potential in low frequencies problems such as for big structures like buildings and bridges.This validated technique re-introduces the personal smartphone as an accurate inexpensive non-contacting vibration measurement tool.
文摘The article aims to study the possible correlation between the presence and intensity of rainfall X- and T-radiation and low energy neutrons at one specific location in S[io Jos6 dos Campos, SP, Brazil. Monitoring of these parameters was carried out from end February to half of June 2013 just in Physics Department of ITA (Technological Institute of Aeronautics). By correlating the data of measurements of intensity of X and ),-radiations with the rainfall it has been found that this meteorological parameter had a significant influence on the background of these radiation profile. A possible reason for this fact is associated with the presence of radon gas in the environment that is dragged to the surface during the occurrences of local rainfall. In relation neutrons, it was possible to note that the rainfall has small influence on this parameter measures.
基金The QTE EDP was funded by the Western Project Program of the Chinese Academy of Sciences (Grant No. KZCX2-XB2-10)Major Program of the National Natural Science Foundation of China (Grant No.40730736)National Science Foundation for Distinguished Young Scholars of China (Grant No. 40625004)
文摘As one part of the National Highway Network Planning in China, the Qinghai-Tibet Expressway (QTE) from Golmud to Lhasa will be built in the interior of the Qinghai-Tibet Plateau (QTP) across about 630 km of permafrost lands. Due to the problematic interactions between the engineering foundations and permafrost, the frozen-soil roadbed of the QTE will be subjected to the more intense thermal disturbances due to the wider black surface. The design and construction for long-term thermal and mechanical stability will face more severe challenges than those in ordinary highways and railways in the same region. In order to provide scientific support for cold regions engineering practices, the QTE Experimental Demonstration Project (EDP) was constructed in situ in the vicinity of the Beilu'he Permafrost Station in the interior of the QTP. In this paper, the anticipated problems of the proposed QTE project are enumerated, and the structures of the test sections for QTE EDP are described. Through numerical simulations, it was found that the heat transfer processes occurring in each specific road structure are significantly different. The heat accumulation in the highway embankment is mainly due to the black bituminous pavement, but in the railway embankment with its gravel surfaces, it mainly comes from the side slopes. As a result, the net heat accumulation of the highway embankment is three times higher than that in the railway. In expressway, the heat accumulation is further increased because of the wider pavement so that significantly more heat will be accumulated in the roadbed beneath the centerline area. Thus, the thermal stability of the fro- zen-soil roadbed and the underlying permafrost of the QTE can be seriously threatened without proper engineering measures protection against thawing. Based on research and practical experiences from the operating Qinghai-Tibet Railway (QTR) and the Qinghai-Tibet Highway (QTH), combined with the predicted characteristics of heat transfer in an expressway embankment, nine kinds of engineering measures for mitigating the thaw settlement of foundation soils through the cooling the roadbed soils were built and are being tested in the EDP. The design of the monitoring system for the EDP and the observed parameters were also described.
基金Supported by National Natural Science Foundation of China(41474115)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education of China(No K2018-02)Educational Commission of Hubei Province of China(D20141302)
文摘To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to establish a method for measuring the partial phase flow rate of oil-water two-phase stratified flow in horizontal wells. An experimental work was performed in horizontal oil-water two-phase flow simulation well using combination production logging tool including mini-capacitance sensor and mini-spinner. The combination tool provides a recording of holdup and velocity profiles at five different heights of the borehole cross-section. The effect of total flow rate and water-cut on the response of spinner and capacitive sensor at five measured positions were investigated. The capacitance water holdup interpolation imaging algorithm was used to determine the local fluid property and oil-water interface height, and the measured local fluid speed was combined with the numerical simulation result to establish an optimal calculation model for obtaining the partial phase flow rate of the oil-water two-phase stratified flow in the horizontal well. The calculated flow rates of five measured points are basically consistent with the experimental data, the total flow rate and water holdup from calculation are in agreement with the set values in the experiment too, suggesting that the method has high accuracy.