Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementi...Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementing this novel targeted cell therapy are increasingly significant.Particularly in the clinical management of solid tumors,obstacles such as the immunosuppressive effects of the tumor microenvironment,limited local tumor infiltration capability of CAR–T cells,heterogeneity of tumor targeting antigens,uncertainties surrounding CAR–T quality,control,and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy.These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach.In this paper,we comprehensively analyze recent preclinical and clinical reports on CAR–T therapy while summarizing crucial factors influencing its efficacy.Furthermore,we aim to identify existing solution strategies and explore their current research status.Through this review article,our objective is to broaden perspectives for further exploration into CAR–T therapy strategies and their clinical applications.展开更多
Co-inhibitory receptors serve as crucial regulators of T-cell function,playing a pivotal role in modulating the delicate balance between immune tolerance and autoimmunity.Initially identified in autoimmune disease mod...Co-inhibitory receptors serve as crucial regulators of T-cell function,playing a pivotal role in modulating the delicate balance between immune tolerance and autoimmunity.Initially identified in autoimmune disease models,co-inhibitory receptors,including CTLA-4,PD-1,TIM-3,and TIGIT,were found to be integral to immune regulation.Their blockade or absence in these models resulted in the induction or exacerbation of autoimmune diseases.Additionally,scholars have observed that co-inhibitory receptors on lymphocytes hold the potential to influence the prognosis in the context of chronic inflammation.Consequently,the blocking of co-suppressor receptors has emerged as a novel therapeutic approach for inhibiting refractory inflammatory diseases,particularly rheumatoid arthritis.From the standpoint of traditional Chinese medicine(TCM),the treatment of rheumatoid arthritis based on the“strengthening body resistance(FúZhèng)”theory can be construed as the regulation of co-suppressor receptors to modulate the body’s immune function in combating chronic inflammation.This article provides a succinct overview of the role of co-suppressor receptors in anti-inflammatory processes and explores the research prospects of co-suppressor receptor intervention in the treatment of rheumatoid arthritis.The exploration integrates the“strengthening body resistance(FúZhèng)”theory with relevant Chinese medicine formulations.展开更多
AIM:To study the diagnostic value of immunoglobulin heavy chain(IgH)and T-cell receptorγ (TCR-γ)gene monoclonal rearrangements in primary gastric lymphoma(PGL).METHODS:A total of 48 patients with suspected PGL at ou...AIM:To study the diagnostic value of immunoglobulin heavy chain(IgH)and T-cell receptorγ (TCR-γ)gene monoclonal rearrangements in primary gastric lymphoma(PGL).METHODS:A total of 48 patients with suspected PGL at our hospital were prospectively enrolled in this study from January 2009 to December 2011.The patients were divided into three groups(a PGL group,a gastric linitis plastica group,and a benign gastric ulcer group)based on the pathological results(gastric mucosal specimens obtained by endoscopy or surgery)and follow-up.Endoscopic ultrasonography(EUS)and EUSguided biopsy were performed in all the patients.The tissue specimens were used for histopathological examination and for IgH and TCR-γ gene rearrangement polymerase chain reaction analyses.RESULTS:EUS and EUS-guided biopsy were successfully performed in all 48 patients.In the PGL group(n=21),monoclonal IgH gene rearrangements were detected in 14(66.7%)patients.A positive result for each set of primers was found in 12(57.1%),8(38.1%),and 4(19.0%)cases using FR1/JH,FR2/JH,and FR3/JH primers,respectively.Overall,12(75%)patients with mucosal-associated lymphoid tissue lymphoma(n=16)and 2(40%)patients with diffuse large B-cell lymphoma(n=5)were positive for monoclonal IgH gene rearrangements.No patients in the gastric linitis plastica group(n=17)and only one(10%)patient in the benign gastric ulcer group(n=10)were positive for a monoclonal IgH gene rearrangement.No TCRgene monoclonal rearrangements were detected.The sensitivity of monoclonal IgH gene rearrangements was 66.7%for a PGL diagnosis,and the specificity was96.4%.In the PGL group,8(100%)patients with stage IIE PGL(n=8)and 6(46.1%)patients with stage IE PGL(n=13)were positive for monoclonal IgH gene rearrangements.CONCLUSION:IgH gene rearrangements may be associated with PGL staging and may be useful for the diagnosis of PGL and for differentiating between PGL and gastric linitis plastica.展开更多
Alzheimer's disease (AD), the predominant form of dementia, is a chronic, incurable neurodegenerative disorder presenting with symptoms includ- ing progressive memory loss and disturbed emotional state. It has been...Alzheimer's disease (AD), the predominant form of dementia, is a chronic, incurable neurodegenerative disorder presenting with symptoms includ- ing progressive memory loss and disturbed emotional state. It has been estimated that dementia affects over 47 million people worldwide (Prince et al., 2015), and with 60-80% of cases attributable to AD.展开更多
We have developed and tested chimeric T-cell receptors (TCR) specific for p185HER2. In these experiments, retroviral vectors expressing the N29γ or N29ζ receptors were constructed in pRET6. Amphotropic viral produce...We have developed and tested chimeric T-cell receptors (TCR) specific for p185HER2. In these experiments, retroviral vectors expressing the N29γ or N29ζ receptors were constructed in pRET6. Amphotropic viral producer cells were established in the GALV-based PG13 packaging cell line. Ficoll purified human peripheral blood lymphocytes (PBL) were virally transduced using an optimized protocol incorporating activation with immobilized anti-CD3/anti-CD28 monoclonal anti- bodies, followed by viral infection in the presence of fibronectin fragment CH296. Transduced cells were co-cultured with human tumor cell lines that overexpress (SK-OV-3) or underexpress (MCF7) p185HER2 to assay for antigen specific im- mune responses. Both CM+ and CD8+ T-cells transduced with the N29γ or N29ζ chTCR demonstrated HER2-specific anti- gen responses, as determined by release of Th1 like cytokines, and cellular cytotoxicity assays. Our results support the fea- sibility of adoptive immunotherapy with genetically modified T-cells expressing a chTCR specific for p185HER2.展开更多
We have confirmed efficient anti-tumor activities of the peripheral lymphocytes transduced with a p185HEH2-specific chimeric T-cell receptor gene both in murine and in human in our previous studies. To further test th...We have confirmed efficient anti-tumor activities of the peripheral lymphocytes transduced with a p185HEH2-specific chimeric T-cell receptor gene both in murine and in human in our previous studies. To further test the feasibility of chimeric T-cell receptor in a bone marrow transplantation model, we first, made two routine tumor cell lines: MT901 and MCA-205, to express human p185HER2 by retroviral gene transduction. Murine bone marrow cells were retrovirally transduced to express the chimeric T-cell receptor and gene-modified bone marrow cells were transplanted into lethally irradiated mouse. Six months post transplantation, p185HER2-positive tumor ceils: MT-901/HER2 or MCA-205/ HER2 was subcutaneously or intravenously injected to make mouse models simulating primary breast cancer or pulmonary metastasis. The in vivo anti-tumor effects were monitored by the size of the subcutaneous tumor or counting the tumor nodules in the lungs after India ink staining. The size of the subcutaneous tumor was significantly inhibited and the number of pulmonary nodules were significantly decreased in mouse recipients transplanted with chimeric T-cell receptor modified bone marrow cells compared with the control group. Our results suggest the efficient in vivo anti-tumor activities of chimeric T-cell receptor gene modified bone marrow cells.展开更多
Extracellular amyloid beta(Aβ) plaques are main pathological feature of Alzheimer’s disease.However,the specific type of neuro ns that produce Aβ peptides in the initial stage of Alzheimer’s disease are unknown.In...Extracellular amyloid beta(Aβ) plaques are main pathological feature of Alzheimer’s disease.However,the specific type of neuro ns that produce Aβ peptides in the initial stage of Alzheimer’s disease are unknown.In this study,we found that 5-hydroxytryptamin receptor 3A subunit(HTR3A) was highly expressed in the brain tissue of transgenic amyloid precursor protein and presenilin-1 mice(an Alzheimer’s disease model) and patients with Alzheimer’s disease.To investigate whether HTR3A-positive interneurons are associated with the production of Aβ plaques,we performed double immunostaining and found that HTR3A-positive interneurons were clustered around Aβ plaques in the mouse model.Some amyloid precursor protein-positive or β-site amyloid precursor protein cleaving enzyme-1-positive neurites near Aβ plaques were co-localized with HTR3A interneurons.These results suggest that HTR3A-positive interneurons may partially contribute to the generation of Aβ peptides.We treated 5.0-5.5-month-old model mice with tro pisetron,a HTR3 antagonist,for 8 consecutive weeks.We found that the cognitive deficit of mice was partially reversed,Aβ plaques and neuroinflammation we re remarkably reduced,the expression of HTR3 was remarkably decreased and the calcineurin/nuclear factor of activated T-cell 4 signaling pathway was inhibited in treated model mice.These findings suggest that HTR3A interneurons partly contribute to generation of Aβ peptide at the initial stage of Alzheimer’s disease and inhibiting HTR3 partly reve rses the pathological changes of Alzheimer’s disease.展开更多
BACKGROUND Anaplastic lymphoma kinase(ALK)-positive large B-cell lymphoma(LBCL)is an aggressive and rare variant of diffuse LBCL.Herein,we report an uncommon case of stage IE extranodal ALK-positive LBCL initially ori...BACKGROUND Anaplastic lymphoma kinase(ALK)-positive large B-cell lymphoma(LBCL)is an aggressive and rare variant of diffuse LBCL.Herein,we report an uncommon case of stage IE extranodal ALK-positive LBCL initially originating in the bulbar con-junctiva.CASE SUMMARY A 63-year-old woman presented with a mass in the left bulbar conjunctiva that had persisted for six months,accompanied by swelling and pain that had per-sisted for 3 d.Eye examination revealed an 8 mm slightly elevated pink mass in the lower conjunctival sac of the left eye.Microscopically,the tumor was com-posed of large immunoblastic and plasmablastic large lymphoid cells with scattered anaplastic or multinucleated large cells.Immunophenotypically,the neoplastic cells were positive for ALK,CD10,CD138,Kappa,MUM1,BOB.1,OCT-2,CD4,CD45,EMA,CD79a,CD38,and AE1/AE3,and negative for CD20,PAX5,Lambda,BCL6,CD30 and all other T-cell antigens.The results of gene rearrangement tests showed monoclonal IGH/IGK/IGL and TCRD rearran-gements.Fluorescence in situ hybridization studies did not reveal any BCL2,BCL6 or MYC rearrangements.Furthermore,Epstein-Barr virus was not detected by in situ hybridization in the lesions.Based on the histopathological and imaging examinations,the neoplasm was classified as stage IE ALK-positive LBCL.No further treatments were administered.At the 6,15,and 21 mo postoperative follow-up visits,the patient was in good condition,without obvious discomfort.This case represents the first example of primary extranodal ALK-positive LBCL presenting as a bulbar conjunctival mass,which is extremely rare and shares morphological and immunohistochemical features with a variety of other neo-plasms that can result in misdiagnosis.CONCLUSION Awareness of the condition presented in this case report is necessary for early and accurate diagnosis and appropriate treatment.展开更多
Background Clinical studies suggest that the dysfunction of T cells and B cells may play an essential role in the pathogenesis of idiopathic nephrotic syndrome(INS),but laboratory evidence is lacking.Therefore,this st...Background Clinical studies suggest that the dysfunction of T cells and B cells may play an essential role in the pathogenesis of idiopathic nephrotic syndrome(INS),but laboratory evidence is lacking.Therefore,this study explored T-cell receptor(TCR)and B-cell receptor(BCR)profiling in children with idiopathic nephrotic syndrome.Methods High-throughput sequencing technology was used to profile the TCR and BCR repertoires in children with INS.Peripheral blood was collected from ten INS patients,including five vinculin autoantibody-positive patients and five vin-culin autoantibody-negative patients,before and after treatment.TCR and BCR libraries were constructed by 5'-RACE and sequenced by a DNBSEQ-T7 sequencer,and sequence analyses were performed using ReSeqTools,FastP,MiXCR,and VDJtools.Results The TRA(T-cell receptorα),TRG(T-cell receptor y),and IGH(immunoglobulin heavy chain)repertoires of the INS group were occupied by highly abundant clonotypes,whereas small clonotypes occupied the healthy group,especially TRA.A significant increase in the Shannon-Weaver index was observed for the TRA and TRG repertoires after treatment in vinculin autoantibody-negative patients,but a significant increase in the IGH repertoire after treatment was observed in vinculin autoantibody-positive patients.The frequency of some V-J pairs was significantly enriched in steroid-sensitive nephrotic syndrome patients.The usage frequency of the V and J genes was skewed in patients,which seemed not related to immunosuppressive therapy.However,after effective treatment,dynamic changes in the size of the individual clonotype were observed.Conclusion T-cell and B-cell immunity contribute to the pathogenesis of different INSs.展开更多
Chimeric antigen receptors (CARs) are fusion molecules that may be genetically delivered ex-vivo to T-cells and other immune cell populations, thereby conferring specifcity for native target antigens found on the s...Chimeric antigen receptors (CARs) are fusion molecules that may be genetically delivered ex-vivo to T-cells and other immune cell populations, thereby conferring specifcity for native target antigens found on the surface of tumour and other target cell types. Antigen recognition by CARs is neither restricted by nor dependent upon human leukocyte antigen antigen expression, favouring widespread use of this technology across transplantation barriers. Signalling is delivered by a designer endodomain that provides a tailored and target-dependent activation signal to polyclonal circulating T-cells. Recent clinical data emphasise the enormous promise of this emer-ging immunotherapeutic strategy for B-cell malignancy, notably acute lymphoblastic leukaemia. In that context, CARs are generally targeted against the ubiquitous B-cell antigen, CD19. However, CAR T-cell immunotherapy is limited by potential for severe ontarget toxicity, notably due to cytokine release syndrome. Furthermore, effcacy in the context of solid tumours remains unproven, owing in part to lack of availability of safe tumourspecific targets, inadequate CAR T-cell homing and hostility of the tumour microenvironment to immune effector deployment. Manufacture and commercial development encountered with more traditional drug products. Finally, there is increasing interest in the application of this technology to the treatment of non-malignant disease states, such as autoimmunity, chronic infection and in the suppression of allograft rejection. Here, we consider the background and direction of travel of this emerging and highly promising treatment for malignant and other disease types.展开更多
To better understand the pathogenesis of Sézary cells, distinguish them from reactive skin-infltrating T-cells and improve disease treatment, efforts have been made to identify molecular targets deregulated by th...To better understand the pathogenesis of Sézary cells, distinguish them from reactive skin-infltrating T-cells and improve disease treatment, efforts have been made to identify molecular targets deregulated by the malignant process. From immunophenotypic analysis and subtractive differential expression experiments to pan-genomic studies, many approaches have been used to identify markers of the disease. During the last decade several natural killer (NK) cell markers have been found aberrantly expressed at the surface of Sézary cells. In particular, KIR3DL2/CD158k, expressed by less than 2% of healthy individuals CD4+ T-cells, is an excellent marker to identify and follow the tumor burden in the blood of Sézary syndrome patients. It may also represent a valuable target for specifc im-munotherapy. Other products of the NK cluster on chromosome 19q13 have been detected on Sézary cells, raising the hypothesis of an NK reprogramming process associated with the malignant transformation that may induce survival functions.展开更多
In the last two decades, it has become clear that yo T cells recognize a diverse array of antigens including self and foreign, large and small, and peptidic and non-peptidic molecules. In this respect, 78 antigens as ...In the last two decades, it has become clear that yo T cells recognize a diverse array of antigens including self and foreign, large and small, and peptidic and non-peptidic molecules. In this respect, 78 antigens as a whole resemble more the antigens recognized by antibodies than those recognized by T cells. Because of this antigenic diversity, no single mechanism--such as the major histocompatibility complex (MHC) restriction of ap T cells--is likely to provide a basis for all observed T-cell antigen receptor (TCR)-dependent 78 T-cell responses. Furthermore, available evidence suggests that many individual 78 T cells are poly-specific, probably using different modes of ligand recognition in their responses to unrelated antigens. While posing a unique challenge in the maintenance of self-tolerance, this broad reactivity pattern might enable multiple overlapping uses of 78 T-cell populations, and thus generate a more efficient immune response.展开更多
Diffuse large B-cell lymphoma(DLBCL)and follicular lymphoma(FL)are the most common forms of aggressive and indolent lymphoma,respectively.The majority of patients are cured by standard R-CHOP immunochemotherapy,but 30...Diffuse large B-cell lymphoma(DLBCL)and follicular lymphoma(FL)are the most common forms of aggressive and indolent lymphoma,respectively.The majority of patients are cured by standard R-CHOP immunochemotherapy,but 30%–40%of DLBCL and 20%of FL patients relapse or are refractory(R/R).DLBCL and FL are phenotypically and genetically hereterogenous B-cell neoplasms.To date,the diagnosis of DLBCL and FL has been based on morphology,immunophenotyping and cytogenetics.However,next-generation sequencing(NGS)is widening our understanding of the genetic basis of the B-cell lymphomas.In this review we will discuss how integrating the NGS-based characterization of somatic gene mutations with diagnostic or prognostic value in DLBCL and FL could help refine B-cell lymphoma classification as part of a multidisciplinary pathology work-up.We will also discuss how molecular testing can identify candidates for clinical trials with targeted therapies and help predict therapeutic outcome to currently available treatments,including chimeric antigen receptor T-cell,as well as explore the application of circulating cell-free DNA,a non-invasive method for patient monitoring.We conclude that molecular analyses can drive improvements in patient outcomes due to an increased understanding of the different pathogenic pathways affected by each DLBCL subtype and indolent FL vs R/R FL.展开更多
With the development of science, the methods and the views or scientitic researcn changed from analyses to syntheses. Recently, more attention has been paid to bio-diversity and complexity. According to the study on M...With the development of science, the methods and the views or scientitic researcn changed from analyses to syntheses. Recently, more attention has been paid to bio-diversity and complexity. According to the study on M-CSF and its receptor for years, the author suggests that, the multi-level of bio-diversity also appears at the bio-macromolecular level. Probability of bio-diversity is one of the bases for bio-complexity. Cellular sociology and topobiology are important aspects in bio-complexity, and should be developed. If taking Chinese traditional medicine together with the advantage from Reductionism, joining the study on complexity, Chinese scientist would make a chair in the international scientific society.展开更多
Tumor-derived exosomes (TEXs) enriched in immune suppressive molecules predominantly drive T-cell dysfunction and impair antitumor immunity. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising tr...Tumor-derived exosomes (TEXs) enriched in immune suppressive molecules predominantly drive T-cell dysfunction and impair antitumor immunity. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for refractory and relapsed hematological malignancies, but whether lymphoma TEXs have the same impact on CAR T-cell remains unclear. Here, we demonstrated that B-cell lymphoma-derived exosomes induce the initial activation of CD19-CAR T-cells upon stimulation with exosomal CD19. However, lymphoma TEXs might subsequently induce CAR T-cell apoptosis and impair the tumor cytotoxicity of the cells because of the upregulated expression of the inhibitory receptors PD-1, TIM3, and LAG3 upon prolonged exposure. Similar results were observed in the CAR T-cells exposed to plasma exosomes from patients with lymphoma. More importantly, single-cell RNA sequencing revealed that CAR T-cells typically showed differentiated phenotypes and regulatory T-cell (Treg) phenotype conversion. By blocking transforming growth factor β (TGF-β)-Smad3 signaling with TGF-β inhibitor LY2109761, the negative effects of TEXs on Treg conversion, terminal differentiation, and immune checkpoint expression were rescued. Collectively, although TEXs lead to the initial activation of CAR T-cells, the effect of TEXs suppressed CAR T-cells, which can be rescued by LY2109761. A treatment regimen combining CAR T-cell therapy and TGF-β inhibitors might be a novel therapeutic strategy for refractory and relapsed B-cell lymphoma.展开更多
Background:Cancer-targeted T-cell receptor T(TCR-T)cells hold promise in treating cancers such as hematological malignancies and breast cancers.However,approaches to obtain cancer-reactive TCR-T cells have been unsucc...Background:Cancer-targeted T-cell receptor T(TCR-T)cells hold promise in treating cancers such as hematological malignancies and breast cancers.However,approaches to obtain cancer-reactive TCR-T cells have been unsuccessful.Methods:Here,we developed a novel strategy to screen for cancer-targeted TCR-T cells using a special humanized mouse model with person-specific immune fingerprints.Rare steady-state circulating hematopoietic stem and progenitor cells were expanded via three-dimensional culture of steady-state peripheral blood mononuclear cells,and then the expanded cells were applied to establish humanized mice.The human immune system was evaluated according to the kinetics of dendritic cells,monocytes,T-cell subsets,and cytokines.To fully stimulate the immune response and to obtain B-cell precursor NAML-6-and triple-negative breast cancer MDA-MB-231-targeted TCR-T cells,we used the inactivated cells above to treat humanized mice twice a day every 7 days.Then,human T cells were processed for TCRβ-chain(TRB)sequencing analysis.After the repertoires had been constructed,features such as the fraction,diversity,and immune signature were investigated.Results:The results demonstrated an increase in diversity and clonality of T cells after treatment.The preferential usage and features of TRBV,TRBJ,and the V–J combination were also changed.The stress also induced highly clonal Science and Technology,Grant/Award Number:2021C03010;Zhejiang Provincial Natural Science Foundation of China,Grant/Award Numbers:LTGY24H080003,LY21H080004 expansion.Tumor burden and survival analysis demonstrated that stress induction could significantly inhibit the growth of subsequently transfused live tumor cells and prolong the survival of the humanized mice.Conclusions:We constructed a personalized humanized mouse model to screen cancer-targeted TCR-T pools.Our platform provides an effective source of cancer-targeted TCR-T cells and allows for the design of patient-specific engineered T cells.It therefore has the potential to greatly benefit cancer treatment.展开更多
基金funded by 2023 Sichuan Scientific and Technological Achievements Transformation Project.Project Number:2023JDZH0024.
文摘Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementing this novel targeted cell therapy are increasingly significant.Particularly in the clinical management of solid tumors,obstacles such as the immunosuppressive effects of the tumor microenvironment,limited local tumor infiltration capability of CAR–T cells,heterogeneity of tumor targeting antigens,uncertainties surrounding CAR–T quality,control,and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy.These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach.In this paper,we comprehensively analyze recent preclinical and clinical reports on CAR–T therapy while summarizing crucial factors influencing its efficacy.Furthermore,we aim to identify existing solution strategies and explore their current research status.Through this review article,our objective is to broaden perspectives for further exploration into CAR–T therapy strategies and their clinical applications.
基金supported by the National Innovation and Entrepreneurship Training Program for College Students(202310268058)Exploration of the Mechanism on Therapeutic Efficacy of Gulong Capsules in Treatment of Osteoarthritis from the Perspective of Multi-omics(E4-H23066).
文摘Co-inhibitory receptors serve as crucial regulators of T-cell function,playing a pivotal role in modulating the delicate balance between immune tolerance and autoimmunity.Initially identified in autoimmune disease models,co-inhibitory receptors,including CTLA-4,PD-1,TIM-3,and TIGIT,were found to be integral to immune regulation.Their blockade or absence in these models resulted in the induction or exacerbation of autoimmune diseases.Additionally,scholars have observed that co-inhibitory receptors on lymphocytes hold the potential to influence the prognosis in the context of chronic inflammation.Consequently,the blocking of co-suppressor receptors has emerged as a novel therapeutic approach for inhibiting refractory inflammatory diseases,particularly rheumatoid arthritis.From the standpoint of traditional Chinese medicine(TCM),the treatment of rheumatoid arthritis based on the“strengthening body resistance(FúZhèng)”theory can be construed as the regulation of co-suppressor receptors to modulate the body’s immune function in combating chronic inflammation.This article provides a succinct overview of the role of co-suppressor receptors in anti-inflammatory processes and explores the research prospects of co-suppressor receptor intervention in the treatment of rheumatoid arthritis.The exploration integrates the“strengthening body resistance(FúZhèng)”theory with relevant Chinese medicine formulations.
基金Supported by The Scientific Research Foundation of the Ministry of Health,China,the Medical and Health Science Foundation,Zhejiang Province,China,No.WKJ-2009-2-021
文摘AIM:To study the diagnostic value of immunoglobulin heavy chain(IgH)and T-cell receptorγ (TCR-γ)gene monoclonal rearrangements in primary gastric lymphoma(PGL).METHODS:A total of 48 patients with suspected PGL at our hospital were prospectively enrolled in this study from January 2009 to December 2011.The patients were divided into three groups(a PGL group,a gastric linitis plastica group,and a benign gastric ulcer group)based on the pathological results(gastric mucosal specimens obtained by endoscopy or surgery)and follow-up.Endoscopic ultrasonography(EUS)and EUSguided biopsy were performed in all the patients.The tissue specimens were used for histopathological examination and for IgH and TCR-γ gene rearrangement polymerase chain reaction analyses.RESULTS:EUS and EUS-guided biopsy were successfully performed in all 48 patients.In the PGL group(n=21),monoclonal IgH gene rearrangements were detected in 14(66.7%)patients.A positive result for each set of primers was found in 12(57.1%),8(38.1%),and 4(19.0%)cases using FR1/JH,FR2/JH,and FR3/JH primers,respectively.Overall,12(75%)patients with mucosal-associated lymphoid tissue lymphoma(n=16)and 2(40%)patients with diffuse large B-cell lymphoma(n=5)were positive for monoclonal IgH gene rearrangements.No patients in the gastric linitis plastica group(n=17)and only one(10%)patient in the benign gastric ulcer group(n=10)were positive for a monoclonal IgH gene rearrangement.No TCRgene monoclonal rearrangements were detected.The sensitivity of monoclonal IgH gene rearrangements was 66.7%for a PGL diagnosis,and the specificity was96.4%.In the PGL group,8(100%)patients with stage IIE PGL(n=8)and 6(46.1%)patients with stage IE PGL(n=13)were positive for monoclonal IgH gene rearrangements.CONCLUSION:IgH gene rearrangements may be associated with PGL staging and may be useful for the diagnosis of PGL and for differentiating between PGL and gastric linitis plastica.
文摘Alzheimer's disease (AD), the predominant form of dementia, is a chronic, incurable neurodegenerative disorder presenting with symptoms includ- ing progressive memory loss and disturbed emotional state. It has been estimated that dementia affects over 47 million people worldwide (Prince et al., 2015), and with 60-80% of cases attributable to AD.
文摘We have developed and tested chimeric T-cell receptors (TCR) specific for p185HER2. In these experiments, retroviral vectors expressing the N29γ or N29ζ receptors were constructed in pRET6. Amphotropic viral producer cells were established in the GALV-based PG13 packaging cell line. Ficoll purified human peripheral blood lymphocytes (PBL) were virally transduced using an optimized protocol incorporating activation with immobilized anti-CD3/anti-CD28 monoclonal anti- bodies, followed by viral infection in the presence of fibronectin fragment CH296. Transduced cells were co-cultured with human tumor cell lines that overexpress (SK-OV-3) or underexpress (MCF7) p185HER2 to assay for antigen specific im- mune responses. Both CM+ and CD8+ T-cells transduced with the N29γ or N29ζ chTCR demonstrated HER2-specific anti- gen responses, as determined by release of Th1 like cytokines, and cellular cytotoxicity assays. Our results support the fea- sibility of adoptive immunotherapy with genetically modified T-cells expressing a chTCR specific for p185HER2.
文摘We have confirmed efficient anti-tumor activities of the peripheral lymphocytes transduced with a p185HEH2-specific chimeric T-cell receptor gene both in murine and in human in our previous studies. To further test the feasibility of chimeric T-cell receptor in a bone marrow transplantation model, we first, made two routine tumor cell lines: MT901 and MCA-205, to express human p185HER2 by retroviral gene transduction. Murine bone marrow cells were retrovirally transduced to express the chimeric T-cell receptor and gene-modified bone marrow cells were transplanted into lethally irradiated mouse. Six months post transplantation, p185HER2-positive tumor ceils: MT-901/HER2 or MCA-205/ HER2 was subcutaneously or intravenously injected to make mouse models simulating primary breast cancer or pulmonary metastasis. The in vivo anti-tumor effects were monitored by the size of the subcutaneous tumor or counting the tumor nodules in the lungs after India ink staining. The size of the subcutaneous tumor was significantly inhibited and the number of pulmonary nodules were significantly decreased in mouse recipients transplanted with chimeric T-cell receptor modified bone marrow cells compared with the control group. Our results suggest the efficient in vivo anti-tumor activities of chimeric T-cell receptor gene modified bone marrow cells.
基金supported by the Notional Natural Science Foundation of China,Nos.81371213 and 8107098 7the Natural Science Foundation of Shanghai,No.21ZR1468400 (all to QLY)。
文摘Extracellular amyloid beta(Aβ) plaques are main pathological feature of Alzheimer’s disease.However,the specific type of neuro ns that produce Aβ peptides in the initial stage of Alzheimer’s disease are unknown.In this study,we found that 5-hydroxytryptamin receptor 3A subunit(HTR3A) was highly expressed in the brain tissue of transgenic amyloid precursor protein and presenilin-1 mice(an Alzheimer’s disease model) and patients with Alzheimer’s disease.To investigate whether HTR3A-positive interneurons are associated with the production of Aβ plaques,we performed double immunostaining and found that HTR3A-positive interneurons were clustered around Aβ plaques in the mouse model.Some amyloid precursor protein-positive or β-site amyloid precursor protein cleaving enzyme-1-positive neurites near Aβ plaques were co-localized with HTR3A interneurons.These results suggest that HTR3A-positive interneurons may partially contribute to the generation of Aβ peptides.We treated 5.0-5.5-month-old model mice with tro pisetron,a HTR3 antagonist,for 8 consecutive weeks.We found that the cognitive deficit of mice was partially reversed,Aβ plaques and neuroinflammation we re remarkably reduced,the expression of HTR3 was remarkably decreased and the calcineurin/nuclear factor of activated T-cell 4 signaling pathway was inhibited in treated model mice.These findings suggest that HTR3A interneurons partly contribute to generation of Aβ peptide at the initial stage of Alzheimer’s disease and inhibiting HTR3 partly reve rses the pathological changes of Alzheimer’s disease.
文摘BACKGROUND Anaplastic lymphoma kinase(ALK)-positive large B-cell lymphoma(LBCL)is an aggressive and rare variant of diffuse LBCL.Herein,we report an uncommon case of stage IE extranodal ALK-positive LBCL initially originating in the bulbar con-junctiva.CASE SUMMARY A 63-year-old woman presented with a mass in the left bulbar conjunctiva that had persisted for six months,accompanied by swelling and pain that had per-sisted for 3 d.Eye examination revealed an 8 mm slightly elevated pink mass in the lower conjunctival sac of the left eye.Microscopically,the tumor was com-posed of large immunoblastic and plasmablastic large lymphoid cells with scattered anaplastic or multinucleated large cells.Immunophenotypically,the neoplastic cells were positive for ALK,CD10,CD138,Kappa,MUM1,BOB.1,OCT-2,CD4,CD45,EMA,CD79a,CD38,and AE1/AE3,and negative for CD20,PAX5,Lambda,BCL6,CD30 and all other T-cell antigens.The results of gene rearrangement tests showed monoclonal IGH/IGK/IGL and TCRD rearran-gements.Fluorescence in situ hybridization studies did not reveal any BCL2,BCL6 or MYC rearrangements.Furthermore,Epstein-Barr virus was not detected by in situ hybridization in the lesions.Based on the histopathological and imaging examinations,the neoplasm was classified as stage IE ALK-positive LBCL.No further treatments were administered.At the 6,15,and 21 mo postoperative follow-up visits,the patient was in good condition,without obvious discomfort.This case represents the first example of primary extranodal ALK-positive LBCL presenting as a bulbar conjunctival mass,which is extremely rare and shares morphological and immunohistochemical features with a variety of other neo-plasms that can result in misdiagnosis.CONCLUSION Awareness of the condition presented in this case report is necessary for early and accurate diagnosis and appropriate treatment.
基金supported by the Natural Science Foundation of Zhejiang Province(LY22H050001)the National Natural Science Foundation of China(82270741,U20A20351)+1 种基金the Key Project of Provincial Ministry Coconstruction,Health Science,and Technology Project Plan of Zhejiang Province(WKJ-ZJ-2128)Yiluqihang Shenmingyuanyang Medical Development and Scientific Research Fund Project on Kidney Diseases(SMYY20220301001).
文摘Background Clinical studies suggest that the dysfunction of T cells and B cells may play an essential role in the pathogenesis of idiopathic nephrotic syndrome(INS),but laboratory evidence is lacking.Therefore,this study explored T-cell receptor(TCR)and B-cell receptor(BCR)profiling in children with idiopathic nephrotic syndrome.Methods High-throughput sequencing technology was used to profile the TCR and BCR repertoires in children with INS.Peripheral blood was collected from ten INS patients,including five vinculin autoantibody-positive patients and five vin-culin autoantibody-negative patients,before and after treatment.TCR and BCR libraries were constructed by 5'-RACE and sequenced by a DNBSEQ-T7 sequencer,and sequence analyses were performed using ReSeqTools,FastP,MiXCR,and VDJtools.Results The TRA(T-cell receptorα),TRG(T-cell receptor y),and IGH(immunoglobulin heavy chain)repertoires of the INS group were occupied by highly abundant clonotypes,whereas small clonotypes occupied the healthy group,especially TRA.A significant increase in the Shannon-Weaver index was observed for the TRA and TRG repertoires after treatment in vinculin autoantibody-negative patients,but a significant increase in the IGH repertoire after treatment was observed in vinculin autoantibody-positive patients.The frequency of some V-J pairs was significantly enriched in steroid-sensitive nephrotic syndrome patients.The usage frequency of the V and J genes was skewed in patients,which seemed not related to immunosuppressive therapy.However,after effective treatment,dynamic changes in the size of the individual clonotype were observed.Conclusion T-cell and B-cell immunity contribute to the pathogenesis of different INSs.
基金Supported by The Wellcome TrustCancer Research UK+9 种基金Bayerthe Medical Research CouncilBreast Cancer NowLeukaemia and Lymphoma ResearchWorldwide Cancer ResearchJune Hancock Mesothelioma FoundationJon Moulton Charitable FoundationPancreatic Cancer United Kingdomthe Experimental Cancer Medicine Centre at King’s College Londonthe National Institute for Health Research(NIHR) Biomedical Research Centre based at Guy’s and St Thomas’NHS Foundation Trust and King’s College London
文摘Chimeric antigen receptors (CARs) are fusion molecules that may be genetically delivered ex-vivo to T-cells and other immune cell populations, thereby conferring specifcity for native target antigens found on the surface of tumour and other target cell types. Antigen recognition by CARs is neither restricted by nor dependent upon human leukocyte antigen antigen expression, favouring widespread use of this technology across transplantation barriers. Signalling is delivered by a designer endodomain that provides a tailored and target-dependent activation signal to polyclonal circulating T-cells. Recent clinical data emphasise the enormous promise of this emer-ging immunotherapeutic strategy for B-cell malignancy, notably acute lymphoblastic leukaemia. In that context, CARs are generally targeted against the ubiquitous B-cell antigen, CD19. However, CAR T-cell immunotherapy is limited by potential for severe ontarget toxicity, notably due to cytokine release syndrome. Furthermore, effcacy in the context of solid tumours remains unproven, owing in part to lack of availability of safe tumourspecific targets, inadequate CAR T-cell homing and hostility of the tumour microenvironment to immune effector deployment. Manufacture and commercial development encountered with more traditional drug products. Finally, there is increasing interest in the application of this technology to the treatment of non-malignant disease states, such as autoimmunity, chronic infection and in the suppression of allograft rejection. Here, we consider the background and direction of travel of this emerging and highly promising treatment for malignant and other disease types.
基金the Inserm, Société de Recherches Dermatologiques (SRD C.S), and Société Franaise de Dermatologie (SFD A.M-C) for their support as well as the European Union through the Euro-Trans-Bio grant (M.B and A.B)
文摘To better understand the pathogenesis of Sézary cells, distinguish them from reactive skin-infltrating T-cells and improve disease treatment, efforts have been made to identify molecular targets deregulated by the malignant process. From immunophenotypic analysis and subtractive differential expression experiments to pan-genomic studies, many approaches have been used to identify markers of the disease. During the last decade several natural killer (NK) cell markers have been found aberrantly expressed at the surface of Sézary cells. In particular, KIR3DL2/CD158k, expressed by less than 2% of healthy individuals CD4+ T-cells, is an excellent marker to identify and follow the tumor burden in the blood of Sézary syndrome patients. It may also represent a valuable target for specifc im-munotherapy. Other products of the NK cluster on chromosome 19q13 have been detected on Sézary cells, raising the hypothesis of an NK reprogramming process associated with the malignant transformation that may induce survival functions.
文摘In the last two decades, it has become clear that yo T cells recognize a diverse array of antigens including self and foreign, large and small, and peptidic and non-peptidic molecules. In this respect, 78 antigens as a whole resemble more the antigens recognized by antibodies than those recognized by T cells. Because of this antigenic diversity, no single mechanism--such as the major histocompatibility complex (MHC) restriction of ap T cells--is likely to provide a basis for all observed T-cell antigen receptor (TCR)-dependent 78 T-cell responses. Furthermore, available evidence suggests that many individual 78 T cells are poly-specific, probably using different modes of ligand recognition in their responses to unrelated antigens. While posing a unique challenge in the maintenance of self-tolerance, this broad reactivity pattern might enable multiple overlapping uses of 78 T-cell populations, and thus generate a more efficient immune response.
文摘Diffuse large B-cell lymphoma(DLBCL)and follicular lymphoma(FL)are the most common forms of aggressive and indolent lymphoma,respectively.The majority of patients are cured by standard R-CHOP immunochemotherapy,but 30%–40%of DLBCL and 20%of FL patients relapse or are refractory(R/R).DLBCL and FL are phenotypically and genetically hereterogenous B-cell neoplasms.To date,the diagnosis of DLBCL and FL has been based on morphology,immunophenotyping and cytogenetics.However,next-generation sequencing(NGS)is widening our understanding of the genetic basis of the B-cell lymphomas.In this review we will discuss how integrating the NGS-based characterization of somatic gene mutations with diagnostic or prognostic value in DLBCL and FL could help refine B-cell lymphoma classification as part of a multidisciplinary pathology work-up.We will also discuss how molecular testing can identify candidates for clinical trials with targeted therapies and help predict therapeutic outcome to currently available treatments,including chimeric antigen receptor T-cell,as well as explore the application of circulating cell-free DNA,a non-invasive method for patient monitoring.We conclude that molecular analyses can drive improvements in patient outcomes due to an increased understanding of the different pathogenic pathways affected by each DLBCL subtype and indolent FL vs R/R FL.
文摘With the development of science, the methods and the views or scientitic researcn changed from analyses to syntheses. Recently, more attention has been paid to bio-diversity and complexity. According to the study on M-CSF and its receptor for years, the author suggests that, the multi-level of bio-diversity also appears at the bio-macromolecular level. Probability of bio-diversity is one of the bases for bio-complexity. Cellular sociology and topobiology are important aspects in bio-complexity, and should be developed. If taking Chinese traditional medicine together with the advantage from Reductionism, joining the study on complexity, Chinese scientist would make a chair in the international scientific society.
基金supported by the funds from the National Natural Science Foundation of China(Nos.81830006,82170219,and 81830004)the Science Technology Department of Zhejiang Province(No.2021C03117).
文摘Tumor-derived exosomes (TEXs) enriched in immune suppressive molecules predominantly drive T-cell dysfunction and impair antitumor immunity. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for refractory and relapsed hematological malignancies, but whether lymphoma TEXs have the same impact on CAR T-cell remains unclear. Here, we demonstrated that B-cell lymphoma-derived exosomes induce the initial activation of CD19-CAR T-cells upon stimulation with exosomal CD19. However, lymphoma TEXs might subsequently induce CAR T-cell apoptosis and impair the tumor cytotoxicity of the cells because of the upregulated expression of the inhibitory receptors PD-1, TIM3, and LAG3 upon prolonged exposure. Similar results were observed in the CAR T-cells exposed to plasma exosomes from patients with lymphoma. More importantly, single-cell RNA sequencing revealed that CAR T-cells typically showed differentiated phenotypes and regulatory T-cell (Treg) phenotype conversion. By blocking transforming growth factor β (TGF-β)-Smad3 signaling with TGF-β inhibitor LY2109761, the negative effects of TEXs on Treg conversion, terminal differentiation, and immune checkpoint expression were rescued. Collectively, although TEXs lead to the initial activation of CAR T-cells, the effect of TEXs suppressed CAR T-cells, which can be rescued by LY2109761. A treatment regimen combining CAR T-cell therapy and TGF-β inhibitors might be a novel therapeutic strategy for refractory and relapsed B-cell lymphoma.
基金National Natural Science Foundation of China,Grant/Award Numbers:82130003,81970158,82000180Zhejiang Provincial Key R&D Projects of Department of Science and Technology,Grant/Award Number:2021C03010Zhejiang Provincial Natural Science Foundation of China,Grant/Award Numbers:LTGY24H080003,LY21H080004。
文摘Background:Cancer-targeted T-cell receptor T(TCR-T)cells hold promise in treating cancers such as hematological malignancies and breast cancers.However,approaches to obtain cancer-reactive TCR-T cells have been unsuccessful.Methods:Here,we developed a novel strategy to screen for cancer-targeted TCR-T cells using a special humanized mouse model with person-specific immune fingerprints.Rare steady-state circulating hematopoietic stem and progenitor cells were expanded via three-dimensional culture of steady-state peripheral blood mononuclear cells,and then the expanded cells were applied to establish humanized mice.The human immune system was evaluated according to the kinetics of dendritic cells,monocytes,T-cell subsets,and cytokines.To fully stimulate the immune response and to obtain B-cell precursor NAML-6-and triple-negative breast cancer MDA-MB-231-targeted TCR-T cells,we used the inactivated cells above to treat humanized mice twice a day every 7 days.Then,human T cells were processed for TCRβ-chain(TRB)sequencing analysis.After the repertoires had been constructed,features such as the fraction,diversity,and immune signature were investigated.Results:The results demonstrated an increase in diversity and clonality of T cells after treatment.The preferential usage and features of TRBV,TRBJ,and the V–J combination were also changed.The stress also induced highly clonal Science and Technology,Grant/Award Number:2021C03010;Zhejiang Provincial Natural Science Foundation of China,Grant/Award Numbers:LTGY24H080003,LY21H080004 expansion.Tumor burden and survival analysis demonstrated that stress induction could significantly inhibit the growth of subsequently transfused live tumor cells and prolong the survival of the humanized mice.Conclusions:We constructed a personalized humanized mouse model to screen cancer-targeted TCR-T pools.Our platform provides an effective source of cancer-targeted TCR-T cells and allows for the design of patient-specific engineered T cells.It therefore has the potential to greatly benefit cancer treatment.