Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC...Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC semiconductor device,an instrumentation amplifier(IA),two resistors,and a diode for disconnection detection.Based on the basic circuit,a multi-channel interface circuit was also implemented.The CJC was implemented using compensation semiconductor and IA,and disconnection detection was detected by using two resistors and a diode so that IA input voltage became-0.42 V.As a result of the experiment using R-type TC,the error of the designed circuit was reduced from 0.14 mV to 3μV after CJC in the temperature range of 0°C to 1400°C.In addition,it was confirmed that the output voltage of IA was saturated from 88 mV to-14.2 V when TC was disconnected from normal.The output voltage of the designed circuit was 0 V to 10 V in the temperature range of 0°C to 1400°C.The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel.The implemented multi-channel interface has a feature that can be applied equally to E,J,K,T,R,and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain.展开更多
To reduce current harmonics caused by switching frequency,T-type grid-connected inverter topology with LCL filter is adopted.In view of the disadvantages of the slow response speed of the traditional current control a...To reduce current harmonics caused by switching frequency,T-type grid-connected inverter topology with LCL filter is adopted.In view of the disadvantages of the slow response speed of the traditional current control and the failure to eliminate the influence of the LCL filter on the grid-connected current by using current PI control alone,a current double closed loop PI current tracking control is proposed.Through the theoretical analysis of the grid-connected inverter control principle,the grid-connected inverter control model is designed,and the transfer functionmodel of each control link is deduced,and the current loop PI regulator is designed at last.The simulation results show that the control strategy is feasible.展开更多
A new method was proposed, in which a high-power CO2 laser modulated by high frequency was used as the driv- ing source to heat up a surface-temperature sensor. The continual beam and the pulsed beam sent out by the s...A new method was proposed, in which a high-power CO2 laser modulated by high frequency was used as the driv- ing source to heat up a surface-temperature sensor. The continual beam and the pulsed beam sent out by the same laser could be used in the same system to carry on the static calibration of the radiation thermometer and the dynamic calibration of the temperature sensor to be checked. The frequency-response characteristics of high-speed radiation thermometer surpassed that of the temperature sensor, therefore it could be used as the reference value to calibrate the latter and let system error be cor- rected. Differences in the environment of the sensor installing and the error caused by the change of thermo-physical proper- ty could be avoided. Thus, the difficult problem of traceable dynamic calibration of temperature was solved. In experiment, to obtain the frequency characteristics of the thermocouple and the dynamic performance of the K type thermocouple, which could compensate the dynamic characteristics of the sensor, the sensor was dynamically corrected by using the method, and then the mathematical model was established.展开更多
The theory for measuring the time constant of thermocouple was introduced, and the method for measuring the time constant of NANMAC thermocouple by using dynamic calibration system of transient surface temperature sen...The theory for measuring the time constant of thermocouple was introduced, and the method for measuring the time constant of NANMAC thermocouple by using dynamic calibration system of transient surface temperature sensor was proposed. In this system, static and dynamic calibrations were conducted for infrared detectors and thermocouples, and then both temperature-time curves were obtained. Since the frequency response of infrared detector is superior to that of calibrat- ed thermocouple, the values measured by infrared detectors are taken as true values. Through dividing the values measured with thermocouples by those with infrared detectors, a normalized curve was obtained, based on which the time constant of thermocouple was measured. With this method, the experiments were carried out with NANMAC thermocouple to obtain its time constant. The results show that the method for measuring the time constant is feasible and the dynamic calibration of thermocouples can be achieved at microsecond and millisecond level. This research has a certain reference value for research and application of NANMAC thermocouple temperature sensor.展开更多
The impedance characteristics of distributed amplifiers are analyzed based on T-type matching networks, and a distributed power amplifier consisting of three gain cells is proposed. Non-uniform T-type matching network...The impedance characteristics of distributed amplifiers are analyzed based on T-type matching networks, and a distributed power amplifier consisting of three gain cells is proposed. Non-uniform T-type matching networks are adopted to make the impedance of artificial transmission lines connected to the gate and drain change stage by stage gradually, which provides good impedance matching and improves the output power and efficiency. The measurement results show that the amplifier gives an average forward gain of 6 dB from 3 to 16. 5 GHz. In the desired band, the input return loss is typically less than - 9. 5 dB, and the output return loss is better than -8.5 dB. The output power at 1-dB gain compression point is from 3.6 to 10. 6 dBm in the band of 2 to 16 GHz while the power added efficiency (PAE) is from 2% to 12. 5% . The power consumption of the amplifier is 81 mW with a supply of 1.8 V, and the chip area is 0.91 mm × 0.45 mm.展开更多
文摘Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC semiconductor device,an instrumentation amplifier(IA),two resistors,and a diode for disconnection detection.Based on the basic circuit,a multi-channel interface circuit was also implemented.The CJC was implemented using compensation semiconductor and IA,and disconnection detection was detected by using two resistors and a diode so that IA input voltage became-0.42 V.As a result of the experiment using R-type TC,the error of the designed circuit was reduced from 0.14 mV to 3μV after CJC in the temperature range of 0°C to 1400°C.In addition,it was confirmed that the output voltage of IA was saturated from 88 mV to-14.2 V when TC was disconnected from normal.The output voltage of the designed circuit was 0 V to 10 V in the temperature range of 0°C to 1400°C.The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel.The implemented multi-channel interface has a feature that can be applied equally to E,J,K,T,R,and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain.
基金Supported by Science and Technology Projects of State Grid Corporation ofChina(J2022019).
文摘To reduce current harmonics caused by switching frequency,T-type grid-connected inverter topology with LCL filter is adopted.In view of the disadvantages of the slow response speed of the traditional current control and the failure to eliminate the influence of the LCL filter on the grid-connected current by using current PI control alone,a current double closed loop PI current tracking control is proposed.Through the theoretical analysis of the grid-connected inverter control principle,the grid-connected inverter control model is designed,and the transfer functionmodel of each control link is deduced,and the current loop PI regulator is designed at last.The simulation results show that the control strategy is feasible.
基金Research Project Supported by Shanxi Scholarship Council of China(No.2012-068)Taiyuan Science and Technology Agency(No.120247-20)Surface-temperature Sensor Dynamic Measurement and Calibration Technology Research of National Defense Fundamental Scientific Research
文摘A new method was proposed, in which a high-power CO2 laser modulated by high frequency was used as the driv- ing source to heat up a surface-temperature sensor. The continual beam and the pulsed beam sent out by the same laser could be used in the same system to carry on the static calibration of the radiation thermometer and the dynamic calibration of the temperature sensor to be checked. The frequency-response characteristics of high-speed radiation thermometer surpassed that of the temperature sensor, therefore it could be used as the reference value to calibrate the latter and let system error be cor- rected. Differences in the environment of the sensor installing and the error caused by the change of thermo-physical proper- ty could be avoided. Thus, the difficult problem of traceable dynamic calibration of temperature was solved. In experiment, to obtain the frequency characteristics of the thermocouple and the dynamic performance of the K type thermocouple, which could compensate the dynamic characteristics of the sensor, the sensor was dynamically corrected by using the method, and then the mathematical model was established.
文摘The theory for measuring the time constant of thermocouple was introduced, and the method for measuring the time constant of NANMAC thermocouple by using dynamic calibration system of transient surface temperature sensor was proposed. In this system, static and dynamic calibrations were conducted for infrared detectors and thermocouples, and then both temperature-time curves were obtained. Since the frequency response of infrared detector is superior to that of calibrat- ed thermocouple, the values measured by infrared detectors are taken as true values. Through dividing the values measured with thermocouples by those with infrared detectors, a normalized curve was obtained, based on which the time constant of thermocouple was measured. With this method, the experiments were carried out with NANMAC thermocouple to obtain its time constant. The results show that the method for measuring the time constant is feasible and the dynamic calibration of thermocouples can be achieved at microsecond and millisecond level. This research has a certain reference value for research and application of NANMAC thermocouple temperature sensor.
基金The National Natural Science Foundation of China(No.61106021)the Postdoctoral Science Foundation of China(No.2015M582541)+1 种基金the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.15KJB510020)the Research Fund of Nanjing University of Posts and Telecommunications(No.NY215140,No.NY215167)
文摘The impedance characteristics of distributed amplifiers are analyzed based on T-type matching networks, and a distributed power amplifier consisting of three gain cells is proposed. Non-uniform T-type matching networks are adopted to make the impedance of artificial transmission lines connected to the gate and drain change stage by stage gradually, which provides good impedance matching and improves the output power and efficiency. The measurement results show that the amplifier gives an average forward gain of 6 dB from 3 to 16. 5 GHz. In the desired band, the input return loss is typically less than - 9. 5 dB, and the output return loss is better than -8.5 dB. The output power at 1-dB gain compression point is from 3.6 to 10. 6 dBm in the band of 2 to 16 GHz while the power added efficiency (PAE) is from 2% to 12. 5% . The power consumption of the amplifier is 81 mW with a supply of 1.8 V, and the chip area is 0.91 mm × 0.45 mm.