期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
T1 THEOREM FOR BESOV SPACES ON NONHOMOGENEOUS SPACES
1
作者 Donggao Deng Yanchang Han 《Analysis in Theory and Applications》 2005年第3期280-293,共14页
Suppose μ is a Radon measure on R^d, which may be non doubling. The only condition assumed on μ is a growth condition, namely, there is a constant Co 〉 0 such that for all x ∈ supp(μ) and r 〉 0, μ(B(x, r)... Suppose μ is a Radon measure on R^d, which may be non doubling. The only condition assumed on μ is a growth condition, namely, there is a constant Co 〉 0 such that for all x ∈ supp(μ) and r 〉 0, μ(B(x, r)) ≤ Cor^n, where 0 〈 n ≤ d. We prove T1 theorem for non doubling measures with weak kernel conditions. Our approach yields new results for kernels satisfying weakened regularity conditions, while recovering previously known Tolsa's results. We also prove T1 theorem for Besov spaces on nonhomogeneous spaces with weak kernel conditions given in [7] . 展开更多
关键词 Besov space t1 theorem nonhomogeneous space Calderón-Zygmund operator Littlewood-Paley theory
下载PDF
T1 theorem for Besov and Triebel-Lizorkin spaces 被引量:1
2
作者 DENG Donggao & HAN Yongsheng Department of Mathematics, Zhongshan University, Guangzhou 510275, China Department of Mathematics, Auburn University, Alabama, 36849, USA 《Science China Mathematics》 SCIE 2005年第5期657-665,共9页
Using the discrete Calderon type reproducing formula and the PlancherelPolya characterization for the Besov and Triebel-Lizorkin spaces, the T1 theorem for the Besov and Triebel-Lizorkin spaces was proved.
关键词 t1 theorem Besov and Triebel-Lizorkin spaces Calderon reproducing formula Plancherel-Polya inequalities.
原文传递
关于T1定理的一个注解 被引量:2
3
作者 杨占英 羿旭明 杨奇祥 《工程数学学报》 CSCD 北大核心 2005年第1期107-112,共6页
在 T1 定理之后,人们试图在核的正则性不断逼近 H¨ormander 条件的情况下建立新的 T1 定理。 在本文中,我们运用 Daubechies 小波在正则性稍弱的条件下同样建立 T1 定理。
关键词 DAUBECHIES小波 t1定理 CALDERÓN-ZYGMUND算子 B-C-R算法 拟环形分解
下载PDF
非齐次Besov和Triebel-Lizorkin空间上的T1定理
4
作者 韩彦昌 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期1-4,10,共5页
应用Calderon再生公式和非齐次Besov和Triebel-Lizorkin空间的Plancherel-Polya刻画在齐型空间上建立了非齐次Besov和Triebel-Lizorkin空间的T1定理。这些结果在Rd也是新的。
关键词 t1定理 Besov和Triebel-Lizorkin空间 Calderon再生公式 Plancherel—Polya不等式
下载PDF
RD空间上广义乘积Calderón-Zygmund算子在端点函数空间上的T1定理
5
作者 郑涛涛 肖燕梅 陶祥兴 《中国科学:数学》 CSCD 北大核心 2023年第3期441-472,共32页
在测度满足双倍条件与逆双倍条件、拟度量满足Holder正则性的乘积RD空间上,本文建立乘积Lipschitz端点函数空间的Littlewood-Paley特征刻画以及弱稠密性质,并证明了广义乘积Calderón-Zygmund算子在此端点函数空间上有界的充分必要... 在测度满足双倍条件与逆双倍条件、拟度量满足Holder正则性的乘积RD空间上,本文建立乘积Lipschitz端点函数空间的Littlewood-Paley特征刻画以及弱稠密性质,并证明了广义乘积Calderón-Zygmund算子在此端点函数空间上有界的充分必要条件是T1(1)=T2(1)=0. 展开更多
关键词 奇异积分算子 t1定理 乘积Lipschitz空间 BESOV空间 齐型空间
原文传递
非齐型空间上Triebel-Lizorkin空间的T1定理
6
作者 韩彦昌 许明 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第4期779-790,共12页
本文在非齐型空间上证明具有Dini核条件的T1定理,获得了加权Fefferman- Stein向量值极大不等式.进一步地,在非齐型空间上得到了加权Tiebel-Lizorkin空间的T1定理.
关键词 t1定理 非齐型空间 TRIEBEL-LIZORKIN空间
原文传递
Boundedness of a class of super singular integral operators and the associated commutators 被引量:7
7
作者 CHEN Qionglei & ZHANG Zhifei Department of Mathematics, Zhejiang University, Hangzhou 310028, China Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China 《Science China Mathematics》 SCIE 2004年第6期842-853,共12页
In this paper we give the (L p α, L p ) boundedness of the maximal operator of a class of super singular integrals defined by $$T_{\Omega ,\alpha }^* f(x) = \mathop {\sup }\limits_{\varepsilon > 0} \left| {\int_{|... In this paper we give the (L p α, L p ) boundedness of the maximal operator of a class of super singular integrals defined by $$T_{\Omega ,\alpha }^* f(x) = \mathop {\sup }\limits_{\varepsilon > 0} \left| {\int_{|x - y| > \varepsilon } {b(|y|)} \Omega (y)|y|^{ - n - \alpha } f(x - y)dy} \right|,$$ which improves and extends the known result. Moreover, by applying an off-Diagonal T1 Theorem, we also obtain the (L p , L q ) boundedness of the commutator defined by $$C_{\Omega ,\alpha } f(x) = p.v. \int_{\mathbb{R}^n } {(A(x)} - A(y))\Omega (x - y)|x - y|^{ - n - \alpha } f(y)dy.$$ 展开更多
关键词 singular integral operator maximal operator COMMUTATOR t1 theorem
原文传递
New Characterizations of Inhomogeneous Besovand Triebel-Lizorkin Spaces over Spaces of Homogeneous Type
8
作者 Yan Chang HAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第11期1787-1804,共18页
In this paper we use the T1 theorem to prove a new characterization with minimum regularity and cancellation conditions for inhomogeneous Besov and Triebel-Lizorkin spaces over spaces of homogeneous type. These result... In this paper we use the T1 theorem to prove a new characterization with minimum regularity and cancellation conditions for inhomogeneous Besov and Triebel-Lizorkin spaces over spaces of homogeneous type. These results are new even for R^n. 展开更多
关键词 t1 theorem inhomogeneous Besov and Triebel-Lizorkin spaces discrete Calderon repro-ducing formula inhomogeneous Plancherel-Polya inequalities
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部