The purpose of this paper is to extend the Littlewood-Paley theory to a geometrically doubling metric space with a non-doubling measure satisfying a weak growth condition. Moreover, we prove that our setting mentioned...The purpose of this paper is to extend the Littlewood-Paley theory to a geometrically doubling metric space with a non-doubling measure satisfying a weak growth condition. Moreover, we prove that our setting mentioned above, is equivalent to the one introduced and studied by HytSnen (2010) in his remarkable framework, i.e., the geometrically doubling metric space with a non-doubling measure satisfying a so-called upper doubling condition. As an application, we obtain the T1 theorem in this more general setting. Moreover, the Gaussian measure is also discussed.展开更多
基金supported by National Natural Science Foundation of China(Grant No.61203249)
文摘The purpose of this paper is to extend the Littlewood-Paley theory to a geometrically doubling metric space with a non-doubling measure satisfying a weak growth condition. Moreover, we prove that our setting mentioned above, is equivalent to the one introduced and studied by HytSnen (2010) in his remarkable framework, i.e., the geometrically doubling metric space with a non-doubling measure satisfying a so-called upper doubling condition. As an application, we obtain the T1 theorem in this more general setting. Moreover, the Gaussian measure is also discussed.