BACKGROUND Neoadjuvant chemotherapy can cause hepatic sinusoidal obstruction syndrome(SOS)in patients with colorectal cancer liver metastases and increases posto-perative morbidity and mortality.AIM To evaluate T1 map...BACKGROUND Neoadjuvant chemotherapy can cause hepatic sinusoidal obstruction syndrome(SOS)in patients with colorectal cancer liver metastases and increases posto-perative morbidity and mortality.AIM To evaluate T1 mapping based on gadoxetic acid-enhanced magnetic resonance imaging(MRI)for diagnosis of hepatic SOS induced by monocrotaline.METHODS Twenty-four mice were divided into control(n=10)and experimental(n=14)groups.The experimental groups were injected with monocrotaline 2 or 6 days before MRI.MRI parameters were:T1 relaxation time before enhancement;T1 relaxation time 20 minutes after enhancement(T_(1post));a reduction in T1 relaxation time(△T_(1)%);and first enhancement slope percentage of the liver parenchyma(ESP).Albumin and bilirubin score was determined.Histological results served as a reference.Liver parenchyma samples from the control and experimental groups were analyzed by western blotting,and organic anion transporter polypeptide 1(OATP1)was measured.RESULTS T_(1post),△T_(1)%,and ESP of the liver parenchyma were significantly different between two groups(all P<0.001)and significantly correlated with the total histological score of hepatic SOS(r=-0.70,0.68 and 0.79;P<0.001).△T_(1)%and ESP were positively correlated with OATP1 levels(r=0.82,0.85;P<0.001),whereas T_(1post) had a negative correlation with OATP1 levels(r=-0.83;P<0.001).INTRODUCTION Hepatic sinusoidal obstruction syndrome(SOS)is also known as hepatic veno-occlusive disease of the liver[1].The main pathological feature of hepatic SOS is damage to liver terminal vessels,and the clinical symptoms of it include ascites and abdominal pain[2].It was first proposed in 1979 as an early complication of hematopoietic stem cell transplantation[3].The prevalence ranges from 5%to 60%,and hepatic SOS is a potentially severe complication and can even lead to death in severe cases[4].Recently,systemic neoadjuvant chemotherapy became widely regarded as one of the causes hepatic SOS in the patients with advanced metastatic colorectal cancer[5,6],especially those were treated with oxaliplatin[7,8].Oxaliplatin-based preoperative chemotherapy is used for patients with colorectal liver metastases as the standard regimen[8,9],because it could improve tumor resection outcome by shrinking the metastatic sites and reducing recurrence rate[10].Nevertheless,chemotherapy-induced hepatic SOS has been associated with a higher risk of postresection morbidity[11],such as intraoperative bleeding,intraoperative transfusions,and postoperative liver failure[12].Therefore,it is important to detect and diagnose of hepatic SOS timely.Currently,the gold standard is still based on liver biopsy[13],but it is an invasive procedure and has several limitations and complications,such as hemorrhage[14].A noninvasive diagnostic modality is needed for the assessment of hepatic SOS.Some noninvasive tools have been used for diagnosis of hepatic SOS.Researchers have utilized a preoperative platelet count and aspartate aminotransferase to platelet ratio index[15].In addition,some imaging methods such as shear wave ultrasonography,computed tomography,and gadoxetic acid-enhanced magnetic resonance imaging(MRI)have been promoted as useful methods for evaluation of hepatic SOS[16-18].Recent studies with monocrotaline(MCT)-treated rats were conducted to investigate diagnosis and prediction of severity of SOS.For example,intravoxel incoherent motion diffusion-weighted imaging,non-Gaussian diffusion models,and T1 rho quantification[19,20].The MCT-induced hepatic SOS animal model was reproducible,with a detailed pathological scoring criteria[21].Gadoxetic acid is a hepatocyte-specific contrast substance,which can provide parenchymal contrast in the hepato-biliary phase.It is reported that gadoxetic acid is absorbed into the liver parenchyma via organic anion transporter polypeptide 1(OATP1)on the hepatocyte membranes[22-24].Recently,several authors have described the feasibility of gadoxetic acid-enhanced MRI for the diagnosis of oxaliplatin-induced hepatic SOS[25].They mainly diagnosed hepatic SOS based on the signal intensity of the hepatobiliary specific phase.However,there were several limitations due to the inconsistency between signal intensity of the liver parenchyma and the concentration of contrast agent for evaluation of the degree of hepatic SOS[26].Therefore,we measured T1 relaxation time on parametric mapping because it is linearly related to the concentration of the contrast agent and is not affected by other factors[27].Yang et al[28]demonstrated T1 mapping on gadoxetic acid-enhanced MRI for the assessment of oxaliplatin-induced liver injury in a C57BL/6 mouse model.However,the main pathological changes in their model were hepatocyte degeneration and fibrosis.Therefore,we aimed to explore the effectiveness of T1 mapping based on gadoxetic acid-enhanced MRI for the diagnosis of hepatic SOS in a C57BL/6 mouse model,as well as a possible relation between OATP1 Levels and MRI parameters.展开更多
The neuronal differentiation of mesenchymal stem cells offers a new strategy for the treatment of neurological disorders.Thus,there is a need to identify a noninvasive and sensitive in vivo imaging approach for real-t...The neuronal differentiation of mesenchymal stem cells offers a new strategy for the treatment of neurological disorders.Thus,there is a need to identify a noninvasive and sensitive in vivo imaging approach for real-time monitoring of transplanted stem cells.Our previous study confirmed that magnetic resonance imaging,with a focus on the ferritin heavy chain 1 reporter gene,could track the proliferation and differentiation of bone marrow mesenchymal stem cells that had been transduced with lentivirus carrying the ferritin heavy chain 1 reporter gene.However,we could not determine whether or when bone marrow mesenchymal stem cells had undergone neuronal differentiation based on changes in the magnetic resonance imaging signal.To solve this problem,we identified a neuron-specific enolase that can be differentially expressed before and after neuronal differentiation in stem cells.In this study,we successfully constructed a lentivirus carrying the neuron-specific enolase promoter and expressing the ferritin heavy chain 1 reporter gene;we used this lentivirus to transduce bone marrow mesenchymal stem cells.Cellular and animal studies showed that the neuron-specific enolase promoter effectively drove the expression of ferritin heavy chain 1 after neuronal differentiation of bone marrow mesenchymal stem cells;this led to intracellular accumulation of iron and corresponding changes in the magnetic resonance imaging signal.In summary,we established an innovative magnetic resonance imaging approach focused on the induction of reporter gene expression by a neuron-specific promoter.This imaging method can be used to noninvasively and sensitively detect neuronal differentiation in stem cells,which may be useful in stem cell-based therapies.展开更多
Polyethylene glycol modified(PEGylated) NaGdF4(PEG-NaGdF4) nanoparticles as a novel T1-weighted magnetic resonance imaging(MRI) contrast agent was successfully constructed by a one-pot hydrothermal synthesis method. B...Polyethylene glycol modified(PEGylated) NaGdF4(PEG-NaGdF4) nanoparticles as a novel T1-weighted magnetic resonance imaging(MRI) contrast agent was successfully constructed by a one-pot hydrothermal synthesis method. Because of the functionalization of PEG, the nanoprobes had excellent dispersity, excellent stability and high biocompatibility. More importantly, the as-prepared PEG-NaGdF4 nanoprobes revealed the high longitudinal relaxivity value and prominent -weighted MRI contrast performance, which was superior to the commercial MRI contrast agents. With the facile synthesis, excellent dispersity, outstanding stability, remarkable contrast performance and high biocompatibility, the PEGylated NaGdF4 nanoparticles brought more opportunities to the new generation of nanoparticulate-based T1-weighted MRI contrast agents in clinic.展开更多
According to clinical statistics,the mortality of patients with early brainstem hemorrhage is high.In this study,we established rat models of brainstem hemorrhage by injecting type Ⅶ collagenase into the right basote...According to clinical statistics,the mortality of patients with early brainstem hemorrhage is high.In this study,we established rat models of brainstem hemorrhage by injecting type Ⅶ collagenase into the right basotegmental pontine and investigated the pathological changes of early brainstem hemorrhage using multi-sequence magnetic resonance imaging and histopathological methods.We found that brainstem hematoma gradually formed in the injured rats over the first 3 days and then reduced after 7 days.The edema that occurred was mainly of the vasogenic type.No complete myelin sheath structure was found around the focus of the brainstem hemorrhage.The integrity and continuity of nerve fibers gradually deteriorated over the first 7 days.Neuronal degeneration was mild in the first 3 days and then obviously aggravated on the 7^(th)day.Inflammatory cytokines,interleukin-1β,and tumor necrosis factorαappeared on the 1st day after intracerebral hemorrhage,reached peak levels on the 3^(rd)day,and decreased from the 7^(th)day.Our findings show the characteristics of the progression of early brainstem hemorrhage.展开更多
BACKGROUND Neurovascular compression(NVC) is the main cause of primary trigeminal neuralgia(TN) and hemifacial spasm(HFS). Microvascular decompression(MVD) is an effective surgical method for the treatment of TN and H...BACKGROUND Neurovascular compression(NVC) is the main cause of primary trigeminal neuralgia(TN) and hemifacial spasm(HFS). Microvascular decompression(MVD) is an effective surgical method for the treatment of TN and HFS caused by NVC. The judgement of NVC is a critical step in the preoperative evaluation of MVD, which is related to the effect of MVD treatment. Magnetic resonance imaging(MRI) technology has been used to detect NVC prior to MVD for several years. Among many MRI sequences, three-dimensional time-of-flight magnetic resonance angiography(3D TOF MRA) is the most widely used. However, 3D TOF MRA has some shortcomings in detecting NVC. Therefore, 3D TOF MRA combined with high resolution T2-weighted imaging(HR T2WI) is considered to be a more effective method to detect NVC.AIM To determine the value of 3D TOF MRA combined with HR T2WI in the judgment of NVC, and thus to assess its value in the preoperative evaluation of MVD.METHODS Related studies published from inception to September 2022 based on PubMed, Embase, Web of Science, and the Cochrane Library were retrieved. Studies that investigated 3D TOF MRA combined with HR T2WI to judge NVC in patients with TN or HFS were included according to the inclusion criteria. Studies without complete data or not relevant to the research topics were excluded. The Quality Assessment of Diagnostic Accuracy Studies checklist was used to assess the quality of included studies. The publication bias of the included literature was examined by Deeks’ test. An exact binomial rendition of the bivariate mixed-effects regression model was used to synthesize data. Data analysis was performed using the MIDAS module of statistical software Stata 16.0. Two independent investigators extracted patient and study characteristics, and discrepancies were resolved by consensus. Individual and pooled sensitivities and specificities were calculated. The I_(2) statistic and Q test were used to test heterogeneity. The study was registered on the website of PROSERO(registration No. CRD42022357158).RESULTS Our search identified 595 articles, of which 12(including 855 patients) fulfilled the inclusion criteria. Bivariate analysis showed that the pooled sensitivity and specificity of 3D TOF MRA combined with HR T2WI for detecting NVC were 0.96 [95% confidence interval(CI): 0.92-0.98] and 0.92(95%CI: 0.74-0.98), respectively. The pooled positive likelihood ratio was 12.4(95%CI: 3.2-47.8), pooled negative likelihood ratio was 0.04(95%CI: 0.02-0.09), and pooled diagnostic odds ratio was 283(95%CI: 50-1620). The area under the receiver operating characteristic curve was 0.98(95%CI: 0.97-0.99). The studies showed no substantial heterogeneity(I2 = 0, Q = 0.001 P = 0.50).CONCLUSION Our results suggest that 3D TOF MRA combined with HR T2WI has excellent sensitivity and specificity for judging NVC in patients with TN or HFS. This method can be used as an effective tool for preoperative evaluation of MVD.展开更多
Increased interest of clinicians for using 3.0 T magnetic resonance imaging (MRI), as imaging modality of choice for their patients, has been evident in the past few years. The aim of this study was to compare the tec...Increased interest of clinicians for using 3.0 T magnetic resonance imaging (MRI), as imaging modality of choice for their patients, has been evident in the past few years. The aim of this study was to compare the technical quality of the obtained tomography using 3.0 T and 1.5 T MRI, and to compare the subjective feeling of discomfort of patients and subjective acoustic noise experience during imaging using MRI at 3.0 T and 1.5 T. Brain MRI (1.5 and 3.0 T) was performed in 58 patients, according to a standardized protocol. All studies have been randomly described by independent two radiologists. The reference standard for the existence of technical artifact is established on the basis of both radiologists’ consensus. We also compared the subjective feelings of the discomfort and acoustic noise during the both MRI (1.5 T and 3.0 T) exams. Artifacts were significantly more common during 3.0 T MRI in comparison with the 1.5 T MRI (χ2 = 5.286, P < 0.05), as well as in male patients (χ2 = 8.841, P < 0.05), and sub-jective assessments of discomfort and acoustic noise were higher in patients who underwent imaging using 3.0 T MRI, (χ2 = 125.959, df = 1, P < 0.001) and in females (χ2 = 195.449, df = 1, P < 0.001). Additional research is needed to prove that appropriate information for patients about the discomfort during 3.0 T MRI and their psychological preparation is very important element for optimal use of 3.0 T MRI in daily clinical practice.展开更多
AIM: To investigate the accuracy of T2*-weighted magnetic resonance imaging (MRI T2*) in the evaluation of iron overload in beta-thalassemia major patients. METHODS: In this cross-sectional study, 210 patients with be...AIM: To investigate the accuracy of T2*-weighted magnetic resonance imaging (MRI T2*) in the evaluation of iron overload in beta-thalassemia major patients. METHODS: In this cross-sectional study, 210 patients with beta-thalassemia major having regular blood transfusions were consecutively enrolled. Serum ferritin levels were measured, and all patients underwent MRI T2* of the liver. Liver biopsy was performed in 53 patients at an interval of no longer than 3 mo after the MRIT2* in each patient. The amount of iron was assessed in both MRI T2* and liver biopsy specimens of each patient. RESULTS: Patients’ ages ranged from 8 to 54 years with a mean of 24.59 ± 8.5 years. Mean serum ferritin level was 1906 ± 1644 ng/mL. Liver biopsy showed a moderate negative correlation with liver MRI T2* (r = -0.573, P = 0.000) and a low positive correlation with ferritin level (r = 0.350, P = 0.001). Serum ferritin levels showed a moderate negative correlation with liver MRI T2* values (r = -0.586, P = 0.000). CONCLUSION: Our study suggests that MRI T2* is a non-invasive, safe and reliable method for detecting iron load in patients with iron overload.展开更多
Objective To investigate the correlation of magnetic resonance imaging (MRI) with histopathologica changes, and to evaluate T2 mapping in assessing muscle trauma in a rabbit model of muscle injury. Methods We divide...Objective To investigate the correlation of magnetic resonance imaging (MRI) with histopathologica changes, and to evaluate T2 mapping in assessing muscle trauma in a rabbit model of muscle injury. Methods We divided 35 rabbits into seven groups that each represented a different time point after intramuscular hemorrhage and muscle injury. Hemorrhage was created by injecting autologous blood into the left legs, and muscle injury was created by scalpel incision of the biceps femoris of the right legs. At different time points, the rabbits underwent Tl-weighted imaging and T2-weighted imaging (TzWl and T2Wl) and T2 mapping. T2 relaxation times were measured, and the corresponding samples were evaluated for pathological changes. Results After 2 h, the intramuscular hemorrhage model demonstrated an increased signal intensity on both TlWl and T2Wl. Histological examination showed erythrocytes within the muscle bundle. On days 1 and 3, the MRI signals were decreased, and there were no significant changes after day 7. From 2 h to 3 days, the muscle-injury model showed a high signal on both TzWl and T2Wl. Corresponding pathological changes included rupture and edema of muscle fibers, and inflammation. The abnormal signals were reduced on day 7. After day 14, the T2Wl intensity remained high. TlWl showed no abnormal changes, but some models showed a high signal, representing fresh bleeding and fatty tissue. T2 relaxation times were significantly different between the central and marginal regions, and between the marginal and normal regions. Conclusion MRI clearly demonstrates intramuscular hemorrhage and muscle injury, which correlate well with histopathological changes. Tz mapping is useful in assessing the extent of injury.展开更多
Brain radiomics can reflect the characteristics of brain pathophysiology.However,the value of T1-weighted images,quantitative susceptibility mapping,and R2*mapping in the diagnosis of Parkinson’s disease(PD)was under...Brain radiomics can reflect the characteristics of brain pathophysiology.However,the value of T1-weighted images,quantitative susceptibility mapping,and R2*mapping in the diagnosis of Parkinson’s disease(PD)was underestimated in previous studies.In this prospective study to establish a model for PD diagnosis based on brain imaging information,we collected high-resolution T1-weighted images,R2*mapping,and quantitative susceptibility imaging data from 171 patients with PD and 179 healthy controls recruited from August 2014 to August 2019.According to the inclusion time,123 PD patients and 121 healthy controls were assigned to train the diagnostic model,while the remaining 106 subjects were assigned to the external validation dataset.We extracted 1408 radiomics features,and then used data-driven feature selection to identify informative features that were significant for discriminating patients with PD from normal controls on the training dataset.The informative features so identified were then used to construct a diagnostic model for PD.The constructed model contained 36 informative radiomics features,mainly representing abnormal subcortical iron distribution(especially in the substantia nigra),structural disorganization(e.g.,in the inferior temporal,paracentral,precuneus,insula,and precentral gyri),and texture misalignment in the subcortical nuclei(e.g.,caudate,globus pallidus,and thalamus).The predictive accuracy of the established model was 81.1±8.0%in the training dataset.On the external validation dataset,the established model showed predictive accuracy of 78.5±2.1%.In the tests of identifying early and drug-naïve PD patients from healthy controls,the accuracies of the model constructed on the same 36 informative features were 80.3±7.1%and 79.1±6.5%,respectively,while the accuracies were 80.4±6.3%and 82.9±5.8%for diagnosing middle-to-late PD and those receiving drug management,respectively.The accuracies for predicting tremor-dominant and non-tremor-dominant PD were 79.8±6.9%and 79.1±6.5%,respectively.In conclusion,the multiple-tissue-specific brain radiomics model constructed from magnetic resonance imaging has the ability to discriminate PD and exhibits the advantages for improving PD diagnosis.展开更多
BACKGROUND Non-invasive assessment of non-alcoholic steatohepatitis(NASH)is increasing in desirability due to the invasive nature and costs associated with the current form of assessment;liver biopsy.Quantitative mult...BACKGROUND Non-invasive assessment of non-alcoholic steatohepatitis(NASH)is increasing in desirability due to the invasive nature and costs associated with the current form of assessment;liver biopsy.Quantitative multiparametric magnetic resonance imaging(mpMRI)to measure liver fat(proton density fat fraction)and fibroinflammatory disease[iron-corrected T1(cT1)],as well as elastography techniques[vibration-controlled transient elastography(VCTE)liver stiffness measure],magnetic resonance elastography(MRE)and 2D Shear-Wave elastography(SWE)to measure stiffness and fat(controlled attenuated parameter,CAP)are emerging alternatives which could be utilised as safe surrogates to liver biopsy.AIM To evaluate the agreement of non-invasive imaging modalities with liver biopsy,and their subsequent diagnostic accuracy for identifying NASH patients.METHODS From January 2019 to February 2020,Japanese patients suspected of NASH were recruited onto a prospective,observational study and were screened using noninvasive imaging techniques;mpMRI with LiverMultiScan®,VCTE,MRE and 2DSWE.Patients were subsequently biopsied,and samples were scored by three independent pathologists.The diagnostic performances of the non-invasive imaging modalities were assessed using area under receiver operating characteristic curve(AUC)with the median of the histology scores as the gold standard diagnoses.Concordance between all three independent pathologists was further explored using Krippendorff’s alpha(a)from weighted kappa statistics.RESULTS N=145 patients with mean age of 60(SD:13 years.),39%females,and 40%with body mass index≥30 kg/m2 were included in the analysis.For identifying patients with NASH,MR liver fat and cT1 were the strongest performing individual measures(AUC:0.80 and 0.75 respectively),and the mpMRI metrics combined(cT1 and MR liver fat)were the overall best non-invasive test(AUC:0.83).For identifying fibrosis≥1,MRE performed best(AUC:0.97),compared to VCTE-liver stiffness measure(AUC:0.94)and 2D-SWE(AUC:0.94).For assessment of steatosis≥1,MR liver fat was the best performing non-invasive test(AUC:0.92),compared to controlled attenuated parameter(AUC:0.75).Assessment of the agreement between pathologists showed that concordance was best for steatosis(a=0.58),moderate for ballooning(a=0.40)and fibrosis(a=0.40),and worst for lobular inflammation(a=0.11).CONCLUSION Quantitative mpMRI is an effective alternative to liver biopsy for diagnosing NASH and non-alcoholic fatty liver,and thus may offer clinical utility in patient management.展开更多
Objective: To study the relationships among magnetic resonance imaging (MRI), histological findings, and insu- lin-like growth factor-I (IGF-I) in steroid-induced osteonecrosis of the femoral head in rabbits. Methods:...Objective: To study the relationships among magnetic resonance imaging (MRI), histological findings, and insu- lin-like growth factor-I (IGF-I) in steroid-induced osteonecrosis of the femoral head in rabbits. Methods: Thirty rabbits were randomly divided into experimental Group A (n=15) and control Group B (n=15). The 7.5 mg/kg (2 ml) of dexamethasone (DEX) and physiological saline (2 ml) were injected into the right gluteus medius muscle twice at one-week intervals in animals of Groups A and B, respectively. At 4, 8 and 16 weeks after obtaining an MRI, the rabbits were sacrificed and the femoral head from one side was removed for histological study of lacunae empty of osteocytes, subchondral vessels, and size of fat cells under microscopy, and the femoral head from the other side was removed for enzyme-linked immunoadsorbent assay (ELISA) for IGF-I. Results: At 4, 8 and 16 weeks after treatment, no necrotic lesions were detected in Group B, while they were detected in Group A. Light microscopy revealed that the fat cells of the marrow cavity were enlarged, subchondral vessels were evidently decreased, and empty bone lacunae were clearly increased. The IGF-I levels in Group A were significantly higher than those in Group B. At 8 weeks after the DEX injection, the MRI of all 20 femora showed an inhomogeneous, low signal intensity area in the femoral head, and at 16 weeks, the findings of all 10 femora showed a specific "line-like sign". The MRI findings of all femora in Group B were normal. Conclusion: MRI is a highly sensitive means of diagnosing early experimental osteonecrosis of the femoral head. However, the abnormal marrow tissues appeared later than 4 weeks when the expression of IGF-I increased. This reparative factor has an early and important role in response to steroid-induced osteonecrosis of the femoral head, and provides a theoretical foundation for understanding the pathology and designing new therapies.展开更多
Similarity coefficient mapping(SCM) aims to improve the morphological evaluation of T*2weighted magnetic resonance imaging(T*2-w MRI). However, how to interpret the generated SCM map is still pending. Moreover, ...Similarity coefficient mapping(SCM) aims to improve the morphological evaluation of T*2weighted magnetic resonance imaging(T*2-w MRI). However, how to interpret the generated SCM map is still pending. Moreover, is it probable to extract tissue dissimilarity messages based on the theory behind SCM? The primary purpose of this paper is to address these two questions. First, the theory of SCM was interpreted from the perspective of linear fitting. Then, a term was embedded for tissue dissimilarity information. Finally, our method was validated with sixteen human brain image series from multiecho T*2-w MRI. Generated maps were investigated from signal-to-noise ratio(SNR) and perceived visual quality, and then interpreted from intra- and inter-tissue intensity. Experimental results show that both perceptibility of anatomical structures and tissue contrast are improved. More importantly, tissue similarity or dissimilarity can be quantified and cross-validated from pixel intensity analysis. This method benefits image enhancement, tissue classification, malformation detection and morphological evaluation.展开更多
AIM To demonstrate feasibility of vessel wall imaging of the superficial palmar arch using high frequency microultrasound, 7T and 3T magnetic resonance imaging(MRI).METHODS Four subjects(ages 22-50 years) were scanned...AIM To demonstrate feasibility of vessel wall imaging of the superficial palmar arch using high frequency microultrasound, 7T and 3T magnetic resonance imaging(MRI).METHODS Four subjects(ages 22-50 years) were scanned on a micro-ultrasound system with a 45-MHz transducer(Vevo 2100, Visual Sonics). Subjects' hands were then imaged on a 3T clinical MR scanner(Siemens Biograph MMR) using an 8-channel special purpose phased array carotid coil. Lastly, subjects' hands were imaged on a 7T clinical MR scanner(Siemens Magnetom 7T Whole Body Scanner) using a custom built 8-channel transmit receive carotid coil. All three imaging modalities were subjectively analyzed for image quality and visualization of the vessel wall. RESULTS Results of this very preliminary study indicated that vessel wall imaging of the superficial palmar arch was feasible with a whole body 7T and 3T MRI in comparison with micro-ultrasound. Subjective analysis of image quality(1-5 scale, 1: poorest, 5: best) from B mode, ultrasound, 3T SPACE MRI and 7T SPACE MRI indicated that the image quality obtained at 7T was superior to both 3T MRI and micro-ultrasound. The 3D SPACE sequence at both 7T and 3T MRI with isotropic voxels allowed for multi-planarreformatting of images and allowed for less operator dependent results as compared to high frequency microultrasound imaging. Although quantitative analysis revealed that there was no significant difference between the three methods, the 7T Tesla trended to have better visibility of the vessel and its wall. CONCLUSION Imaging of smaller arteries at the 7T is feasible for evaluating atherosclerosis burden and may be of clinical relevance in multiple diseases.展开更多
The contrast agent concentration, the time of repetition (TR) and magnetic field strength are significant parameters that influence for the accurate signal intensity (SI) in quantitative Magnetic Resonance Imaging (MR...The contrast agent concentration, the time of repetition (TR) and magnetic field strength are significant parameters that influence for the accurate signal intensity (SI) in quantitative Magnetic Resonance Imaging (MRI). Therefore, this study was conducted to investigate and refine the dependence and the optimal effect of Time of Repetition (TR) on the relationship between signal intensity and Gd-DTPA (Gadolinium-diethylene-triaminepenta-acetic acid) concentration, after applying two-dimensional (2D) Spin Echo (SE) pulse sequence under low-field MRI. In addition to that, the optimal concentration of Gd-DTPA at given sequence parameters at low-field MRI was also evaluated. A water-filled phantom was constructed for a range of Gd-DTPA concentrations (0 - 6 mmol/L) and the mean signal intensities (SIs) were assessed in the defined region of interest on T1-weighted images with different TR values (40 - 2000 ms). The generated signal-concentration curves for Gd-DTPA revealed that increasing TR was associated with the increase of the overall SIs and the maximum relationship between SI to concentration. Moreover, the required Gd-DTPA concentration to produce the maximum SI was associated to decrease with the increase of TR. In addition to this, the application of beyond 100 ms TR values in this study with relatively higher concentrations (beyond 1 - 2 mmol/L) has resulted predominantly non-linear patterns in the signal-concentration curves and it appears the saturation or decay of the SIs due to T2 effect. From these results, it can be suggested that the selection of relatively lower Gd-DTPA concentration ( mmol/L) with less than 800 ms (<800 ms) TR values can produce a better linear relationship between the concertation and SIs in T1-weighted SE low field contrast-enhanced MRI. Furthermore, this study also outlined the significance and necessity of the optimization of TR in SE sequence in low field MRI prior to a particular examination.展开更多
Objective To investigate the diagnostic value of brain magnetic resonance imaging in detecting central nervous system diseases among AIDS patients of different levels of T cells. Methods Total of 164 AIDS patients who...Objective To investigate the diagnostic value of brain magnetic resonance imaging in detecting central nervous system diseases among AIDS patients of different levels of T cells. Methods Total of 164 AIDS patients who did not receive antiviral treatment were divided into 2 groups according to their baseline CD4+ T cell counts. Group A had CD4+ T cell below or equal to 50 cells/μl(n = 81) and group B had CD4+ T cells over 50 cells/μl(n = 83). All patients underwent brain MRI scan. Imaging analysis and the prevalence of the central nervous system disorders were compared between two groups. Results Among them 48 cases were found of abnormal brain MRI, group A was higher than group B(35.8% vs. 22.9%) although without statistical significance(P = 0.065). Altogether 48 cases were diagnosed as AIDS related central nervous system disorders based on clinical symptoms, signs and laboratory findings. The prevalence of CNS disorders was higher in group A than in group B(41.9% vs. 16.8%) with statistical significance(P < 0.01). Conclusions The patients with CD4+ T cell count less than or equal to 50 cells/μl had high prevalence of CNS diseases. Brain MRI plays an important role in the diagnosis and differentiation of CNS diseases in advanced AIDS patients. This study suggests patients with low CD4+ T cell count(≤ 50/μl) should routinely undergo MRI examination.展开更多
Today, the use of cardiovascular magnetic resonance(CMR) is widespread in clinical practice. The increased need to evaluate of subtle myocardial changes, coronary artery anatomy, and hemodynamic assessment has prompte...Today, the use of cardiovascular magnetic resonance(CMR) is widespread in clinical practice. The increased need to evaluate of subtle myocardial changes, coronary artery anatomy, and hemodynamic assessment has prompted the development of novel CMR techniques including T1 and T2 mapping, non-contrast angiography and four dimensional(4D) flow. T1 mapping is suitable for diagnosing pathologies affecting extracellular volume such as myocarditis, diffuse myocardial fibrosis and amyloidosis, and is a promising diagnostic tool for patients with iron overload and Fabry disease. T2 mapping is useful in depicting acute myocardial edema and estimating the amount of salvageable myocardium following an ischemic event. Novel angiography techniques, such as the selfnavigated whole-heart or the quiescent-interval singleshot sequence, enable the visualization of the great vessels and coronary artery anatomy without the use of contrast material. The 4D flow technique overcomes the limitations of standard phase-contrast imaging and allows for the assessment of cardiovascular hemodynamics in the great arteries and flow patterns in the cardiac chambers. In conclusion, the future of CMR is heading toward a more reliable quantitative assessment of the myocardium, an improved non-contrast visualization of the coronary artery anatomy, and a more accurate evaluation of the cardiac hemodynamics.展开更多
Objective To investigate the clinical value of different magnetic resonance (MR) pulse sequences in diagnosis of spinal metastatic tumor. Methods Fifteen patients with clinically suspected spinal metastatic tumor were...Objective To investigate the clinical value of different magnetic resonance (MR) pulse sequences in diagnosis of spinal metastatic tumor. Methods Fifteen patients with clinically suspected spinal metastatic tumor were included in this study. These patients were with documented primary tumors. Four MR pulse sequences, T1-weighted spin echo (T1WI SE), T2-weighted fast spin echo (T2WI FSE), short time inversion recovery (STIR), and gradient echo 2-D multi echo data imaging combination (GE Me-2D) were used to detect spinal metastasis. Results Fifteen vertebral bodies were entire involvement, 38 vertebral bodies were section involvement, and totally 53 vertebral bodies were involved. There were 19 focal infections in pedicle of vertebral arch, 15 metastases in spinous process and transverse process. Fifty-three vertebral bodies were abnormal in T1WI SE and GE Me-2D, 35 vertebral bodies were found abnormal in T2WI FSE, and 50 vertebral bodies were found abnormal in STIR. The verges of focal signal of involved vertebral bodies were comparatively clear in T1WI SE, comparatively clear or vague in T2WI FSE, vague in STIR, and clear in GE Me-2D.Conclusions GE Me-2D may be the most sensitive technique to detect metastases. So three sequences (T1WI SE, T2WI FSE, GE Me-2D) can demonstrate the early changes of spinal metastasis roundly.展开更多
基金the National Science Foundation for Young Scientists of China,No.81701682.
文摘BACKGROUND Neoadjuvant chemotherapy can cause hepatic sinusoidal obstruction syndrome(SOS)in patients with colorectal cancer liver metastases and increases posto-perative morbidity and mortality.AIM To evaluate T1 mapping based on gadoxetic acid-enhanced magnetic resonance imaging(MRI)for diagnosis of hepatic SOS induced by monocrotaline.METHODS Twenty-four mice were divided into control(n=10)and experimental(n=14)groups.The experimental groups were injected with monocrotaline 2 or 6 days before MRI.MRI parameters were:T1 relaxation time before enhancement;T1 relaxation time 20 minutes after enhancement(T_(1post));a reduction in T1 relaxation time(△T_(1)%);and first enhancement slope percentage of the liver parenchyma(ESP).Albumin and bilirubin score was determined.Histological results served as a reference.Liver parenchyma samples from the control and experimental groups were analyzed by western blotting,and organic anion transporter polypeptide 1(OATP1)was measured.RESULTS T_(1post),△T_(1)%,and ESP of the liver parenchyma were significantly different between two groups(all P<0.001)and significantly correlated with the total histological score of hepatic SOS(r=-0.70,0.68 and 0.79;P<0.001).△T_(1)%and ESP were positively correlated with OATP1 levels(r=0.82,0.85;P<0.001),whereas T_(1post) had a negative correlation with OATP1 levels(r=-0.83;P<0.001).INTRODUCTION Hepatic sinusoidal obstruction syndrome(SOS)is also known as hepatic veno-occlusive disease of the liver[1].The main pathological feature of hepatic SOS is damage to liver terminal vessels,and the clinical symptoms of it include ascites and abdominal pain[2].It was first proposed in 1979 as an early complication of hematopoietic stem cell transplantation[3].The prevalence ranges from 5%to 60%,and hepatic SOS is a potentially severe complication and can even lead to death in severe cases[4].Recently,systemic neoadjuvant chemotherapy became widely regarded as one of the causes hepatic SOS in the patients with advanced metastatic colorectal cancer[5,6],especially those were treated with oxaliplatin[7,8].Oxaliplatin-based preoperative chemotherapy is used for patients with colorectal liver metastases as the standard regimen[8,9],because it could improve tumor resection outcome by shrinking the metastatic sites and reducing recurrence rate[10].Nevertheless,chemotherapy-induced hepatic SOS has been associated with a higher risk of postresection morbidity[11],such as intraoperative bleeding,intraoperative transfusions,and postoperative liver failure[12].Therefore,it is important to detect and diagnose of hepatic SOS timely.Currently,the gold standard is still based on liver biopsy[13],but it is an invasive procedure and has several limitations and complications,such as hemorrhage[14].A noninvasive diagnostic modality is needed for the assessment of hepatic SOS.Some noninvasive tools have been used for diagnosis of hepatic SOS.Researchers have utilized a preoperative platelet count and aspartate aminotransferase to platelet ratio index[15].In addition,some imaging methods such as shear wave ultrasonography,computed tomography,and gadoxetic acid-enhanced magnetic resonance imaging(MRI)have been promoted as useful methods for evaluation of hepatic SOS[16-18].Recent studies with monocrotaline(MCT)-treated rats were conducted to investigate diagnosis and prediction of severity of SOS.For example,intravoxel incoherent motion diffusion-weighted imaging,non-Gaussian diffusion models,and T1 rho quantification[19,20].The MCT-induced hepatic SOS animal model was reproducible,with a detailed pathological scoring criteria[21].Gadoxetic acid is a hepatocyte-specific contrast substance,which can provide parenchymal contrast in the hepato-biliary phase.It is reported that gadoxetic acid is absorbed into the liver parenchyma via organic anion transporter polypeptide 1(OATP1)on the hepatocyte membranes[22-24].Recently,several authors have described the feasibility of gadoxetic acid-enhanced MRI for the diagnosis of oxaliplatin-induced hepatic SOS[25].They mainly diagnosed hepatic SOS based on the signal intensity of the hepatobiliary specific phase.However,there were several limitations due to the inconsistency between signal intensity of the liver parenchyma and the concentration of contrast agent for evaluation of the degree of hepatic SOS[26].Therefore,we measured T1 relaxation time on parametric mapping because it is linearly related to the concentration of the contrast agent and is not affected by other factors[27].Yang et al[28]demonstrated T1 mapping on gadoxetic acid-enhanced MRI for the assessment of oxaliplatin-induced liver injury in a C57BL/6 mouse model.However,the main pathological changes in their model were hepatocyte degeneration and fibrosis.Therefore,we aimed to explore the effectiveness of T1 mapping based on gadoxetic acid-enhanced MRI for the diagnosis of hepatic SOS in a C57BL/6 mouse model,as well as a possible relation between OATP1 Levels and MRI parameters.
基金supported by the National Natural Science Foundation of China,No.81771892(to JHC).
文摘The neuronal differentiation of mesenchymal stem cells offers a new strategy for the treatment of neurological disorders.Thus,there is a need to identify a noninvasive and sensitive in vivo imaging approach for real-time monitoring of transplanted stem cells.Our previous study confirmed that magnetic resonance imaging,with a focus on the ferritin heavy chain 1 reporter gene,could track the proliferation and differentiation of bone marrow mesenchymal stem cells that had been transduced with lentivirus carrying the ferritin heavy chain 1 reporter gene.However,we could not determine whether or when bone marrow mesenchymal stem cells had undergone neuronal differentiation based on changes in the magnetic resonance imaging signal.To solve this problem,we identified a neuron-specific enolase that can be differentially expressed before and after neuronal differentiation in stem cells.In this study,we successfully constructed a lentivirus carrying the neuron-specific enolase promoter and expressing the ferritin heavy chain 1 reporter gene;we used this lentivirus to transduce bone marrow mesenchymal stem cells.Cellular and animal studies showed that the neuron-specific enolase promoter effectively drove the expression of ferritin heavy chain 1 after neuronal differentiation of bone marrow mesenchymal stem cells;this led to intracellular accumulation of iron and corresponding changes in the magnetic resonance imaging signal.In summary,we established an innovative magnetic resonance imaging approach focused on the induction of reporter gene expression by a neuron-specific promoter.This imaging method can be used to noninvasively and sensitively detect neuronal differentiation in stem cells,which may be useful in stem cell-based therapies.
文摘Polyethylene glycol modified(PEGylated) NaGdF4(PEG-NaGdF4) nanoparticles as a novel T1-weighted magnetic resonance imaging(MRI) contrast agent was successfully constructed by a one-pot hydrothermal synthesis method. Because of the functionalization of PEG, the nanoprobes had excellent dispersity, excellent stability and high biocompatibility. More importantly, the as-prepared PEG-NaGdF4 nanoprobes revealed the high longitudinal relaxivity value and prominent -weighted MRI contrast performance, which was superior to the commercial MRI contrast agents. With the facile synthesis, excellent dispersity, outstanding stability, remarkable contrast performance and high biocompatibility, the PEGylated NaGdF4 nanoparticles brought more opportunities to the new generation of nanoparticulate-based T1-weighted MRI contrast agents in clinic.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region, No. 2020D01A13 (to CWW)Chengdu Science and Technology Bureau, No. 2019-YF05-00511-SN (to MT)1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University, Nos. ZY2016102 (to MT), and ZY2016203 (to CY)
文摘According to clinical statistics,the mortality of patients with early brainstem hemorrhage is high.In this study,we established rat models of brainstem hemorrhage by injecting type Ⅶ collagenase into the right basotegmental pontine and investigated the pathological changes of early brainstem hemorrhage using multi-sequence magnetic resonance imaging and histopathological methods.We found that brainstem hematoma gradually formed in the injured rats over the first 3 days and then reduced after 7 days.The edema that occurred was mainly of the vasogenic type.No complete myelin sheath structure was found around the focus of the brainstem hemorrhage.The integrity and continuity of nerve fibers gradually deteriorated over the first 7 days.Neuronal degeneration was mild in the first 3 days and then obviously aggravated on the 7^(th)day.Inflammatory cytokines,interleukin-1β,and tumor necrosis factorαappeared on the 1st day after intracerebral hemorrhage,reached peak levels on the 3^(rd)day,and decreased from the 7^(th)day.Our findings show the characteristics of the progression of early brainstem hemorrhage.
基金Supported by the Key Research and Development Plan of Shaanxi Province,No.2021SF-298.
文摘BACKGROUND Neurovascular compression(NVC) is the main cause of primary trigeminal neuralgia(TN) and hemifacial spasm(HFS). Microvascular decompression(MVD) is an effective surgical method for the treatment of TN and HFS caused by NVC. The judgement of NVC is a critical step in the preoperative evaluation of MVD, which is related to the effect of MVD treatment. Magnetic resonance imaging(MRI) technology has been used to detect NVC prior to MVD for several years. Among many MRI sequences, three-dimensional time-of-flight magnetic resonance angiography(3D TOF MRA) is the most widely used. However, 3D TOF MRA has some shortcomings in detecting NVC. Therefore, 3D TOF MRA combined with high resolution T2-weighted imaging(HR T2WI) is considered to be a more effective method to detect NVC.AIM To determine the value of 3D TOF MRA combined with HR T2WI in the judgment of NVC, and thus to assess its value in the preoperative evaluation of MVD.METHODS Related studies published from inception to September 2022 based on PubMed, Embase, Web of Science, and the Cochrane Library were retrieved. Studies that investigated 3D TOF MRA combined with HR T2WI to judge NVC in patients with TN or HFS were included according to the inclusion criteria. Studies without complete data or not relevant to the research topics were excluded. The Quality Assessment of Diagnostic Accuracy Studies checklist was used to assess the quality of included studies. The publication bias of the included literature was examined by Deeks’ test. An exact binomial rendition of the bivariate mixed-effects regression model was used to synthesize data. Data analysis was performed using the MIDAS module of statistical software Stata 16.0. Two independent investigators extracted patient and study characteristics, and discrepancies were resolved by consensus. Individual and pooled sensitivities and specificities were calculated. The I_(2) statistic and Q test were used to test heterogeneity. The study was registered on the website of PROSERO(registration No. CRD42022357158).RESULTS Our search identified 595 articles, of which 12(including 855 patients) fulfilled the inclusion criteria. Bivariate analysis showed that the pooled sensitivity and specificity of 3D TOF MRA combined with HR T2WI for detecting NVC were 0.96 [95% confidence interval(CI): 0.92-0.98] and 0.92(95%CI: 0.74-0.98), respectively. The pooled positive likelihood ratio was 12.4(95%CI: 3.2-47.8), pooled negative likelihood ratio was 0.04(95%CI: 0.02-0.09), and pooled diagnostic odds ratio was 283(95%CI: 50-1620). The area under the receiver operating characteristic curve was 0.98(95%CI: 0.97-0.99). The studies showed no substantial heterogeneity(I2 = 0, Q = 0.001 P = 0.50).CONCLUSION Our results suggest that 3D TOF MRA combined with HR T2WI has excellent sensitivity and specificity for judging NVC in patients with TN or HFS. This method can be used as an effective tool for preoperative evaluation of MVD.
文摘Increased interest of clinicians for using 3.0 T magnetic resonance imaging (MRI), as imaging modality of choice for their patients, has been evident in the past few years. The aim of this study was to compare the technical quality of the obtained tomography using 3.0 T and 1.5 T MRI, and to compare the subjective feeling of discomfort of patients and subjective acoustic noise experience during imaging using MRI at 3.0 T and 1.5 T. Brain MRI (1.5 and 3.0 T) was performed in 58 patients, according to a standardized protocol. All studies have been randomly described by independent two radiologists. The reference standard for the existence of technical artifact is established on the basis of both radiologists’ consensus. We also compared the subjective feelings of the discomfort and acoustic noise during the both MRI (1.5 T and 3.0 T) exams. Artifacts were significantly more common during 3.0 T MRI in comparison with the 1.5 T MRI (χ2 = 5.286, P < 0.05), as well as in male patients (χ2 = 8.841, P < 0.05), and sub-jective assessments of discomfort and acoustic noise were higher in patients who underwent imaging using 3.0 T MRI, (χ2 = 125.959, df = 1, P < 0.001) and in females (χ2 = 195.449, df = 1, P < 0.001). Additional research is needed to prove that appropriate information for patients about the discomfort during 3.0 T MRI and their psychological preparation is very important element for optimal use of 3.0 T MRI in daily clinical practice.
基金Supported by The Gastrointestinal and Liver Disease Research Center of Tehran University of Medical Sciences
文摘AIM: To investigate the accuracy of T2*-weighted magnetic resonance imaging (MRI T2*) in the evaluation of iron overload in beta-thalassemia major patients. METHODS: In this cross-sectional study, 210 patients with beta-thalassemia major having regular blood transfusions were consecutively enrolled. Serum ferritin levels were measured, and all patients underwent MRI T2* of the liver. Liver biopsy was performed in 53 patients at an interval of no longer than 3 mo after the MRIT2* in each patient. The amount of iron was assessed in both MRI T2* and liver biopsy specimens of each patient. RESULTS: Patients’ ages ranged from 8 to 54 years with a mean of 24.59 ± 8.5 years. Mean serum ferritin level was 1906 ± 1644 ng/mL. Liver biopsy showed a moderate negative correlation with liver MRI T2* (r = -0.573, P = 0.000) and a low positive correlation with ferritin level (r = 0.350, P = 0.001). Serum ferritin levels showed a moderate negative correlation with liver MRI T2* values (r = -0.586, P = 0.000). CONCLUSION: Our study suggests that MRI T2* is a non-invasive, safe and reliable method for detecting iron load in patients with iron overload.
基金supported by the National Natural Science Foundation of China (Grant No.81071131)the "215" program (Grant No.2009-2-03)
文摘Objective To investigate the correlation of magnetic resonance imaging (MRI) with histopathologica changes, and to evaluate T2 mapping in assessing muscle trauma in a rabbit model of muscle injury. Methods We divided 35 rabbits into seven groups that each represented a different time point after intramuscular hemorrhage and muscle injury. Hemorrhage was created by injecting autologous blood into the left legs, and muscle injury was created by scalpel incision of the biceps femoris of the right legs. At different time points, the rabbits underwent Tl-weighted imaging and T2-weighted imaging (TzWl and T2Wl) and T2 mapping. T2 relaxation times were measured, and the corresponding samples were evaluated for pathological changes. Results After 2 h, the intramuscular hemorrhage model demonstrated an increased signal intensity on both TlWl and T2Wl. Histological examination showed erythrocytes within the muscle bundle. On days 1 and 3, the MRI signals were decreased, and there were no significant changes after day 7. From 2 h to 3 days, the muscle-injury model showed a high signal on both TzWl and T2Wl. Corresponding pathological changes included rupture and edema of muscle fibers, and inflammation. The abnormal signals were reduced on day 7. After day 14, the T2Wl intensity remained high. TlWl showed no abnormal changes, but some models showed a high signal, representing fresh bleeding and fatty tissue. T2 relaxation times were significantly different between the central and marginal regions, and between the marginal and normal regions. Conclusion MRI clearly demonstrates intramuscular hemorrhage and muscle injury, which correlate well with histopathological changes. Tz mapping is useful in assessing the extent of injury.
基金supported by the National Natural Science Foundation of China, Nos.82001767(to XJG), 81971577(to MMZ), 82171888(to XJX)the Natural Science Foundation of Zhejiang Province of China, Nos.LQ21H180008(to XJG), LQ20H180012(to MX)+1 种基金the China Postdoctoral Science Foundation, Nos.2021T140599(to XJG), 2019M662082(to XJG)the 13th Five-year Plan for National Key Research and Development Program of China, No.2016YFC1306600(to MMZ)
文摘Brain radiomics can reflect the characteristics of brain pathophysiology.However,the value of T1-weighted images,quantitative susceptibility mapping,and R2*mapping in the diagnosis of Parkinson’s disease(PD)was underestimated in previous studies.In this prospective study to establish a model for PD diagnosis based on brain imaging information,we collected high-resolution T1-weighted images,R2*mapping,and quantitative susceptibility imaging data from 171 patients with PD and 179 healthy controls recruited from August 2014 to August 2019.According to the inclusion time,123 PD patients and 121 healthy controls were assigned to train the diagnostic model,while the remaining 106 subjects were assigned to the external validation dataset.We extracted 1408 radiomics features,and then used data-driven feature selection to identify informative features that were significant for discriminating patients with PD from normal controls on the training dataset.The informative features so identified were then used to construct a diagnostic model for PD.The constructed model contained 36 informative radiomics features,mainly representing abnormal subcortical iron distribution(especially in the substantia nigra),structural disorganization(e.g.,in the inferior temporal,paracentral,precuneus,insula,and precentral gyri),and texture misalignment in the subcortical nuclei(e.g.,caudate,globus pallidus,and thalamus).The predictive accuracy of the established model was 81.1±8.0%in the training dataset.On the external validation dataset,the established model showed predictive accuracy of 78.5±2.1%.In the tests of identifying early and drug-naïve PD patients from healthy controls,the accuracies of the model constructed on the same 36 informative features were 80.3±7.1%and 79.1±6.5%,respectively,while the accuracies were 80.4±6.3%and 82.9±5.8%for diagnosing middle-to-late PD and those receiving drug management,respectively.The accuracies for predicting tremor-dominant and non-tremor-dominant PD were 79.8±6.9%and 79.1±6.5%,respectively.In conclusion,the multiple-tissue-specific brain radiomics model constructed from magnetic resonance imaging has the ability to discriminate PD and exhibits the advantages for improving PD diagnosis.
文摘BACKGROUND Non-invasive assessment of non-alcoholic steatohepatitis(NASH)is increasing in desirability due to the invasive nature and costs associated with the current form of assessment;liver biopsy.Quantitative multiparametric magnetic resonance imaging(mpMRI)to measure liver fat(proton density fat fraction)and fibroinflammatory disease[iron-corrected T1(cT1)],as well as elastography techniques[vibration-controlled transient elastography(VCTE)liver stiffness measure],magnetic resonance elastography(MRE)and 2D Shear-Wave elastography(SWE)to measure stiffness and fat(controlled attenuated parameter,CAP)are emerging alternatives which could be utilised as safe surrogates to liver biopsy.AIM To evaluate the agreement of non-invasive imaging modalities with liver biopsy,and their subsequent diagnostic accuracy for identifying NASH patients.METHODS From January 2019 to February 2020,Japanese patients suspected of NASH were recruited onto a prospective,observational study and were screened using noninvasive imaging techniques;mpMRI with LiverMultiScan®,VCTE,MRE and 2DSWE.Patients were subsequently biopsied,and samples were scored by three independent pathologists.The diagnostic performances of the non-invasive imaging modalities were assessed using area under receiver operating characteristic curve(AUC)with the median of the histology scores as the gold standard diagnoses.Concordance between all three independent pathologists was further explored using Krippendorff’s alpha(a)from weighted kappa statistics.RESULTS N=145 patients with mean age of 60(SD:13 years.),39%females,and 40%with body mass index≥30 kg/m2 were included in the analysis.For identifying patients with NASH,MR liver fat and cT1 were the strongest performing individual measures(AUC:0.80 and 0.75 respectively),and the mpMRI metrics combined(cT1 and MR liver fat)were the overall best non-invasive test(AUC:0.83).For identifying fibrosis≥1,MRE performed best(AUC:0.97),compared to VCTE-liver stiffness measure(AUC:0.94)and 2D-SWE(AUC:0.94).For assessment of steatosis≥1,MR liver fat was the best performing non-invasive test(AUC:0.92),compared to controlled attenuated parameter(AUC:0.75).Assessment of the agreement between pathologists showed that concordance was best for steatosis(a=0.58),moderate for ballooning(a=0.40)and fibrosis(a=0.40),and worst for lobular inflammation(a=0.11).CONCLUSION Quantitative mpMRI is an effective alternative to liver biopsy for diagnosing NASH and non-alcoholic fatty liver,and thus may offer clinical utility in patient management.
基金Project (No. 06MA169) supported by the Medical Science Founda-tion of Nanjing Military Region, China
文摘Objective: To study the relationships among magnetic resonance imaging (MRI), histological findings, and insu- lin-like growth factor-I (IGF-I) in steroid-induced osteonecrosis of the femoral head in rabbits. Methods: Thirty rabbits were randomly divided into experimental Group A (n=15) and control Group B (n=15). The 7.5 mg/kg (2 ml) of dexamethasone (DEX) and physiological saline (2 ml) were injected into the right gluteus medius muscle twice at one-week intervals in animals of Groups A and B, respectively. At 4, 8 and 16 weeks after obtaining an MRI, the rabbits were sacrificed and the femoral head from one side was removed for histological study of lacunae empty of osteocytes, subchondral vessels, and size of fat cells under microscopy, and the femoral head from the other side was removed for enzyme-linked immunoadsorbent assay (ELISA) for IGF-I. Results: At 4, 8 and 16 weeks after treatment, no necrotic lesions were detected in Group B, while they were detected in Group A. Light microscopy revealed that the fat cells of the marrow cavity were enlarged, subchondral vessels were evidently decreased, and empty bone lacunae were clearly increased. The IGF-I levels in Group A were significantly higher than those in Group B. At 8 weeks after the DEX injection, the MRI of all 20 femora showed an inhomogeneous, low signal intensity area in the femoral head, and at 16 weeks, the findings of all 10 femora showed a specific "line-like sign". The MRI findings of all femora in Group B were normal. Conclusion: MRI is a highly sensitive means of diagnosing early experimental osteonecrosis of the femoral head. However, the abnormal marrow tissues appeared later than 4 weeks when the expression of IGF-I increased. This reparative factor has an early and important role in response to steroid-induced osteonecrosis of the femoral head, and provides a theoretical foundation for understanding the pathology and designing new therapies.
基金Project supported in part by the National High Technology Research and Development Program of China(Grant Nos.2015AA043203 and 2012AA02A604)the National Natural Science Foundation of China(Grant Nos.81171402+8 种基金61471349and 81501463)the Innovative Research Team Program of Guangdong Province,China(Grant No.2011S013)the Science and Technological Program for Higher Education,Science and Researchand Health Care Institutions of Guangdong ProvinceChina(Grant No.2011108101001)the Natural Science Foundation of Guangdong Province,China(Grant No.2014A030310360)the Fundamental Research Program of Shenzhen City,China(Grant No.JCYJ20140417113430639)Beijing Center for Mathematics and Information Interdisciplinary Sciences,China
文摘Similarity coefficient mapping(SCM) aims to improve the morphological evaluation of T*2weighted magnetic resonance imaging(T*2-w MRI). However, how to interpret the generated SCM map is still pending. Moreover, is it probable to extract tissue dissimilarity messages based on the theory behind SCM? The primary purpose of this paper is to address these two questions. First, the theory of SCM was interpreted from the perspective of linear fitting. Then, a term was embedded for tissue dissimilarity information. Finally, our method was validated with sixteen human brain image series from multiecho T*2-w MRI. Generated maps were investigated from signal-to-noise ratio(SNR) and perceived visual quality, and then interpreted from intra- and inter-tissue intensity. Experimental results show that both perceptibility of anatomical structures and tissue contrast are improved. More importantly, tissue similarity or dissimilarity can be quantified and cross-validated from pixel intensity analysis. This method benefits image enhancement, tissue classification, malformation detection and morphological evaluation.
文摘AIM To demonstrate feasibility of vessel wall imaging of the superficial palmar arch using high frequency microultrasound, 7T and 3T magnetic resonance imaging(MRI).METHODS Four subjects(ages 22-50 years) were scanned on a micro-ultrasound system with a 45-MHz transducer(Vevo 2100, Visual Sonics). Subjects' hands were then imaged on a 3T clinical MR scanner(Siemens Biograph MMR) using an 8-channel special purpose phased array carotid coil. Lastly, subjects' hands were imaged on a 7T clinical MR scanner(Siemens Magnetom 7T Whole Body Scanner) using a custom built 8-channel transmit receive carotid coil. All three imaging modalities were subjectively analyzed for image quality and visualization of the vessel wall. RESULTS Results of this very preliminary study indicated that vessel wall imaging of the superficial palmar arch was feasible with a whole body 7T and 3T MRI in comparison with micro-ultrasound. Subjective analysis of image quality(1-5 scale, 1: poorest, 5: best) from B mode, ultrasound, 3T SPACE MRI and 7T SPACE MRI indicated that the image quality obtained at 7T was superior to both 3T MRI and micro-ultrasound. The 3D SPACE sequence at both 7T and 3T MRI with isotropic voxels allowed for multi-planarreformatting of images and allowed for less operator dependent results as compared to high frequency microultrasound imaging. Although quantitative analysis revealed that there was no significant difference between the three methods, the 7T Tesla trended to have better visibility of the vessel and its wall. CONCLUSION Imaging of smaller arteries at the 7T is feasible for evaluating atherosclerosis burden and may be of clinical relevance in multiple diseases.
文摘The contrast agent concentration, the time of repetition (TR) and magnetic field strength are significant parameters that influence for the accurate signal intensity (SI) in quantitative Magnetic Resonance Imaging (MRI). Therefore, this study was conducted to investigate and refine the dependence and the optimal effect of Time of Repetition (TR) on the relationship between signal intensity and Gd-DTPA (Gadolinium-diethylene-triaminepenta-acetic acid) concentration, after applying two-dimensional (2D) Spin Echo (SE) pulse sequence under low-field MRI. In addition to that, the optimal concentration of Gd-DTPA at given sequence parameters at low-field MRI was also evaluated. A water-filled phantom was constructed for a range of Gd-DTPA concentrations (0 - 6 mmol/L) and the mean signal intensities (SIs) were assessed in the defined region of interest on T1-weighted images with different TR values (40 - 2000 ms). The generated signal-concentration curves for Gd-DTPA revealed that increasing TR was associated with the increase of the overall SIs and the maximum relationship between SI to concentration. Moreover, the required Gd-DTPA concentration to produce the maximum SI was associated to decrease with the increase of TR. In addition to this, the application of beyond 100 ms TR values in this study with relatively higher concentrations (beyond 1 - 2 mmol/L) has resulted predominantly non-linear patterns in the signal-concentration curves and it appears the saturation or decay of the SIs due to T2 effect. From these results, it can be suggested that the selection of relatively lower Gd-DTPA concentration ( mmol/L) with less than 800 ms (<800 ms) TR values can produce a better linear relationship between the concertation and SIs in T1-weighted SE low field contrast-enhanced MRI. Furthermore, this study also outlined the significance and necessity of the optimization of TR in SE sequence in low field MRI prior to a particular examination.
基金supported by grants from the Key Program of the Natural Science Foundation of Guangdong Province(S2012020010873)the Science and Technology Plan Project of Shenzhen(201302096)+2 种基金the Science and Technology Innovation Foundation of Shenzhen(CYJ20120829093552348)Shenzhen Key Fund for Emerging Infectious Diseasesthe AIDS Trust Fund of Hongkong
文摘Objective To investigate the diagnostic value of brain magnetic resonance imaging in detecting central nervous system diseases among AIDS patients of different levels of T cells. Methods Total of 164 AIDS patients who did not receive antiviral treatment were divided into 2 groups according to their baseline CD4+ T cell counts. Group A had CD4+ T cell below or equal to 50 cells/μl(n = 81) and group B had CD4+ T cells over 50 cells/μl(n = 83). All patients underwent brain MRI scan. Imaging analysis and the prevalence of the central nervous system disorders were compared between two groups. Results Among them 48 cases were found of abnormal brain MRI, group A was higher than group B(35.8% vs. 22.9%) although without statistical significance(P = 0.065). Altogether 48 cases were diagnosed as AIDS related central nervous system disorders based on clinical symptoms, signs and laboratory findings. The prevalence of CNS disorders was higher in group A than in group B(41.9% vs. 16.8%) with statistical significance(P < 0.01). Conclusions The patients with CD4+ T cell count less than or equal to 50 cells/μl had high prevalence of CNS diseases. Brain MRI plays an important role in the diagnosis and differentiation of CNS diseases in advanced AIDS patients. This study suggests patients with low CD4+ T cell count(≤ 50/μl) should routinely undergo MRI examination.
文摘Today, the use of cardiovascular magnetic resonance(CMR) is widespread in clinical practice. The increased need to evaluate of subtle myocardial changes, coronary artery anatomy, and hemodynamic assessment has prompted the development of novel CMR techniques including T1 and T2 mapping, non-contrast angiography and four dimensional(4D) flow. T1 mapping is suitable for diagnosing pathologies affecting extracellular volume such as myocarditis, diffuse myocardial fibrosis and amyloidosis, and is a promising diagnostic tool for patients with iron overload and Fabry disease. T2 mapping is useful in depicting acute myocardial edema and estimating the amount of salvageable myocardium following an ischemic event. Novel angiography techniques, such as the selfnavigated whole-heart or the quiescent-interval singleshot sequence, enable the visualization of the great vessels and coronary artery anatomy without the use of contrast material. The 4D flow technique overcomes the limitations of standard phase-contrast imaging and allows for the assessment of cardiovascular hemodynamics in the great arteries and flow patterns in the cardiac chambers. In conclusion, the future of CMR is heading toward a more reliable quantitative assessment of the myocardium, an improved non-contrast visualization of the coronary artery anatomy, and a more accurate evaluation of the cardiac hemodynamics.
文摘Objective To investigate the clinical value of different magnetic resonance (MR) pulse sequences in diagnosis of spinal metastatic tumor. Methods Fifteen patients with clinically suspected spinal metastatic tumor were included in this study. These patients were with documented primary tumors. Four MR pulse sequences, T1-weighted spin echo (T1WI SE), T2-weighted fast spin echo (T2WI FSE), short time inversion recovery (STIR), and gradient echo 2-D multi echo data imaging combination (GE Me-2D) were used to detect spinal metastasis. Results Fifteen vertebral bodies were entire involvement, 38 vertebral bodies were section involvement, and totally 53 vertebral bodies were involved. There were 19 focal infections in pedicle of vertebral arch, 15 metastases in spinous process and transverse process. Fifty-three vertebral bodies were abnormal in T1WI SE and GE Me-2D, 35 vertebral bodies were found abnormal in T2WI FSE, and 50 vertebral bodies were found abnormal in STIR. The verges of focal signal of involved vertebral bodies were comparatively clear in T1WI SE, comparatively clear or vague in T2WI FSE, vague in STIR, and clear in GE Me-2D.Conclusions GE Me-2D may be the most sensitive technique to detect metastases. So three sequences (T1WI SE, T2WI FSE, GE Me-2D) can demonstrate the early changes of spinal metastasis roundly.