This study aimed to evaluate the T2 relaxation time of the brain in severely scalded rats using a magnetic resonance (MR) T2 mapping sequence, and to investigate the correlation between T2 relaxation time and plasma...This study aimed to evaluate the T2 relaxation time of the brain in severely scalded rats using a magnetic resonance (MR) T2 mapping sequence, and to investigate the correlation between T2 relaxation time and plasma glucose level. Twenty-eight Wistar rats were randomly divided into the scalded group (n = 21)and control group (n = 7). Magnetic resonance scans were performed with T1WI, T2WI, and T2-mapping sequences in the scalded group; the scans were performed 1 day prior to scalding and 1, 3, 5, and 7 days post-scalding; in addition, identical MR scans were performed in the control group at the same time points. T2-maps were generated and T2 relaxation times were acquired from the following brain regions: the hippocampus, thalamus, caudate-putamen, and cerebrum. Pathological changes of the hippocampus were observed. The plasma glucose level of each rat was measured before each MR scan, and a correlation analysis was performed between T2 relaxation time and plasma glucose level. We found that conventional T 1WI and T2WI did not reveal any abnormal signals or morphological changes in the hippocampus, thalamus, caudate-putamen,: or cerebrum post-scalding. Both the T2 relaxation times of the selected brain regions and plasma glucose levels increased 1, 3, and 5 days post-scalding, and returned to normal levels 7 days post-scalding. The most marked increase of T2 relaxation time was found in the hippocampus; similar changes were also revealed in the thalamus, caudate-putamen, and cerebrum. No correlation was found between T2 relaxation time and plasma glucose level in scalded rats. Pathological observation of the hippocampus showed edema 1, 3, and 5 days post-scalding, with recovery to normal findings at 7 days post-scalding. Thus, we concluded that T2 mapping is a sensitive method for detecting and monitoring scald injury in the rat brain. As the hippocampus is the main region for modulating a stress reaction, it showed significantly increased water content along with an increased plasma glucose level post-scalding.展开更多
Objective Thyroid-associated ophthalmopathy(TAO)is an autoimmune disorder involving the orbital tissue.This study aimed to understand the role of regulatory T cells(Tregs)in TAO during 12-week systemic glucocorticoid(...Objective Thyroid-associated ophthalmopathy(TAO)is an autoimmune disorder involving the orbital tissue.This study aimed to understand the role of regulatory T cells(Tregs)in TAO during 12-week systemic glucocorticoid(GC)treatment.Methods Thirty-two moderate-severe TAO patients with a clinical activity score(CAS)≥3/7 or with prolonged T2 relaxation time(T2RT)on at least one side of extraocular muscle(EOM)were enrolled.The percentage of the peripheral CD4+CD25(high)CD127(−/low)Tregs was analyzed using flow cytometry before and after the GC treatment.The activity and severity of TAO,T2RT,and the clinical outcomes after the GC treatment were assessed.Their correlation with the peripheral Tregs was investigated.Results There was no significant association between the baseline Treg fraction and the activity and severity of TAO or the treatment response.A significant reduction of Tregs was observed after the GC therapy merely in patients without any clinical improvement.Conclusion Treg reduction after systemic GC therapy is indicative of a poor therapeutic response.Accordingly,dynamic alterations of Tregs could help to evaluate the effectiveness of the GC treatment.展开更多
Superparamagnetic iron oxide (SPIO) nanoparticle clusters are one unique form which can enhance magnetic relaxivity and improve the magnetic resonance imaging contrast at the same iron concentration, comparing to si...Superparamagnetic iron oxide (SPIO) nanoparticle clusters are one unique form which can enhance magnetic relaxivity and improve the magnetic resonance imaging contrast at the same iron concentration, comparing to single SPIO nanoparticles. Controlling of cluster size and other structural parameters have drawn great interests in this field to further improve their magnetic properties. In this study, we investigated how the interparticle distance (also known as neighbor distance) of SP10 nanocrystals within clusters affect their magnetic relaxation behaviors. To adjust the neighbor distance, different amount of cholesterol (CHO) was chosen as model spacers embedded into SPIO nanocluster systems with the help of amphiphilic diblock copolymer poly(ethylene glyco)-polyester. Small- angle X-ray scattering was applied to quantify the neighbor distance of SPIO clusters. The results demonstrated that the averaged SPIO nanocrystal neighbor distance of nan- oclusters increased with higher amount of added CHO. Moreover, these SPIO nanocrystal clusters had the promi- nent magnetic relaxation properties. Simultaneously, con- trolling of SPIO nanocrystal neighbor distance can regulate the saturation magnetization (Ms) and magnetic resonance (MR) T2 relaxation of the aggregation, and ultimately obtain better MR contrast effects with decreased neighbor distance.展开更多
文摘This study aimed to evaluate the T2 relaxation time of the brain in severely scalded rats using a magnetic resonance (MR) T2 mapping sequence, and to investigate the correlation between T2 relaxation time and plasma glucose level. Twenty-eight Wistar rats were randomly divided into the scalded group (n = 21)and control group (n = 7). Magnetic resonance scans were performed with T1WI, T2WI, and T2-mapping sequences in the scalded group; the scans were performed 1 day prior to scalding and 1, 3, 5, and 7 days post-scalding; in addition, identical MR scans were performed in the control group at the same time points. T2-maps were generated and T2 relaxation times were acquired from the following brain regions: the hippocampus, thalamus, caudate-putamen, and cerebrum. Pathological changes of the hippocampus were observed. The plasma glucose level of each rat was measured before each MR scan, and a correlation analysis was performed between T2 relaxation time and plasma glucose level. We found that conventional T 1WI and T2WI did not reveal any abnormal signals or morphological changes in the hippocampus, thalamus, caudate-putamen,: or cerebrum post-scalding. Both the T2 relaxation times of the selected brain regions and plasma glucose levels increased 1, 3, and 5 days post-scalding, and returned to normal levels 7 days post-scalding. The most marked increase of T2 relaxation time was found in the hippocampus; similar changes were also revealed in the thalamus, caudate-putamen, and cerebrum. No correlation was found between T2 relaxation time and plasma glucose level in scalded rats. Pathological observation of the hippocampus showed edema 1, 3, and 5 days post-scalding, with recovery to normal findings at 7 days post-scalding. Thus, we concluded that T2 mapping is a sensitive method for detecting and monitoring scald injury in the rat brain. As the hippocampus is the main region for modulating a stress reaction, it showed significantly increased water content along with an increased plasma glucose level post-scalding.
基金supported by the National Natural Science Foundation of China(No.81100581)the Beijing Bethune Charitable Foundation(No.2021).
文摘Objective Thyroid-associated ophthalmopathy(TAO)is an autoimmune disorder involving the orbital tissue.This study aimed to understand the role of regulatory T cells(Tregs)in TAO during 12-week systemic glucocorticoid(GC)treatment.Methods Thirty-two moderate-severe TAO patients with a clinical activity score(CAS)≥3/7 or with prolonged T2 relaxation time(T2RT)on at least one side of extraocular muscle(EOM)were enrolled.The percentage of the peripheral CD4+CD25(high)CD127(−/low)Tregs was analyzed using flow cytometry before and after the GC treatment.The activity and severity of TAO,T2RT,and the clinical outcomes after the GC treatment were assessed.Their correlation with the peripheral Tregs was investigated.Results There was no significant association between the baseline Treg fraction and the activity and severity of TAO or the treatment response.A significant reduction of Tregs was observed after the GC therapy merely in patients without any clinical improvement.Conclusion Treg reduction after systemic GC therapy is indicative of a poor therapeutic response.Accordingly,dynamic alterations of Tregs could help to evaluate the effectiveness of the GC treatment.
基金supported by the National Key Basic Research Program of China (2013CB933903)the National High Technology R&D Program of China (2012BAI23B08)the National Natural Science Foundation of China (20974065, 51173117 and 50830107)
文摘Superparamagnetic iron oxide (SPIO) nanoparticle clusters are one unique form which can enhance magnetic relaxivity and improve the magnetic resonance imaging contrast at the same iron concentration, comparing to single SPIO nanoparticles. Controlling of cluster size and other structural parameters have drawn great interests in this field to further improve their magnetic properties. In this study, we investigated how the interparticle distance (also known as neighbor distance) of SP10 nanocrystals within clusters affect their magnetic relaxation behaviors. To adjust the neighbor distance, different amount of cholesterol (CHO) was chosen as model spacers embedded into SPIO nanocluster systems with the help of amphiphilic diblock copolymer poly(ethylene glyco)-polyester. Small- angle X-ray scattering was applied to quantify the neighbor distance of SPIO clusters. The results demonstrated that the averaged SPIO nanocrystal neighbor distance of nan- oclusters increased with higher amount of added CHO. Moreover, these SPIO nanocrystal clusters had the promi- nent magnetic relaxation properties. Simultaneously, con- trolling of SPIO nanocrystal neighbor distance can regulate the saturation magnetization (Ms) and magnetic resonance (MR) T2 relaxation of the aggregation, and ultimately obtain better MR contrast effects with decreased neighbor distance.