基于中国T213集合预报系统资料,根据Anderson-Darling检验原理,研究基于集合预报与模式历史预报累积概率密度(简称模式气候)分布函数连续差异特征的极端温度天气预报方法,建立极端温度天气预报指数(Extreme Temperature Forecast Ind...基于中国T213集合预报系统资料,根据Anderson-Darling检验原理,研究基于集合预报与模式历史预报累积概率密度(简称模式气候)分布函数连续差异特征的极端温度天气预报方法,建立极端温度天气预报指数(Extreme Temperature Forecast Index,简称EFI)的数学模型。利用S指数评分方法确定发布极端温度预警信号的阈值,得出:1月的发布极端高温的预警信号的阈值为0.7或0.8,发布极端低温的预警信号的阈值为-0.7或-0.8。基于EFI指数以及该阈值,对2013年1月中国极端温度天气进行预报试验,得出:极端天气预报指数对极端温度天气具有较好的识别能力,可提前3~7 d发出极端温度预警信号,随着预报时效的延长,预报技巧逐渐降低。展开更多
文摘基于中国T213集合预报系统资料,根据Anderson-Darling检验原理,研究基于集合预报与模式历史预报累积概率密度(简称模式气候)分布函数连续差异特征的极端温度天气预报方法,建立极端温度天气预报指数(Extreme Temperature Forecast Index,简称EFI)的数学模型。利用S指数评分方法确定发布极端温度预警信号的阈值,得出:1月的发布极端高温的预警信号的阈值为0.7或0.8,发布极端低温的预警信号的阈值为-0.7或-0.8。基于EFI指数以及该阈值,对2013年1月中国极端温度天气进行预报试验,得出:极端天气预报指数对极端温度天气具有较好的识别能力,可提前3~7 d发出极端温度预警信号,随着预报时效的延长,预报技巧逐渐降低。