针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进IN...针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。展开更多
Integrated use of statistical process control (SPC) and engineering process control (EPC) has better performance than that by solely using SPC or EPC. But integrated scheme has resulted in the problem of “Window of O...Integrated use of statistical process control (SPC) and engineering process control (EPC) has better performance than that by solely using SPC or EPC. But integrated scheme has resulted in the problem of “Window of Opportunity” and autocorrelation. In this paper, advanced T2 statistics model and neural networks scheme are combined to solve the above problems: use T2 statistics technique to solve the problem of autocorrelation;adopt neural networks technique to solve the problem of “Window of Opportunity” and identification of disturbance causes. At the same time, regarding the shortcoming of neural network technique that its algorithm has a low speed of convergence and it is usually plunged into local optimum easily. Genetic algorithm was proposed to train samples in this paper. Results of the simulation ex-periments show that this method can detect the process disturbance quickly and accurately as well as identify the dis-turbance type.展开更多
We built a three-dimensional irregular network model which can adequately describe reservoir rock pore-throat structures. We carried out numerical simulations to study the NMR T2 distribution of water-saturated rocks....We built a three-dimensional irregular network model which can adequately describe reservoir rock pore-throat structures. We carried out numerical simulations to study the NMR T2 distribution of water-saturated rocks. The results indicate that there is a good correlation between T2 distribution and the pore radius frequency histogram. The total T2 distribution can be partitioned into pore body and pore throat parts. The effect of parameters including throat radius, pore-throat ratio, and coordination number of the micro- pore structure on the T2 distribution can be evaluated individually. The result indicates that: 1 ) with the increase of the pore throat radius, the T2 distribution moves toward longer relaxation times and its peak intensity increases; 2) with the increase of the pore-throat ratio, the T2 distribution moves towards longer T2 with the peak intensity increasing and the overlap between pore body T2 and pore throat T2 decreasing; 3) With the increase of connectivity, the short T2 component increases and peak signal intensity decreases slightly.展开更多
Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)framework.However,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image ...Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)framework.However,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approaches the ground-truth image distribution.Moreover,the multistage generation strategy results in complex T2I applications.Therefore,this study proposes a novel feature-grounded single-stage T2I model,which considers the“real”distribution learned from training images as one input and introduces a worst-case-optimized similarity measure into the loss function to enhance the model's generation capacity.Experimental results on two benchmark datasets demonstrate the competitive performance of the proposed model in terms of the Frechet inception distance and inception score compared to those of some classical and state-of-the-art models,showing the improved similarities among the generated image,text,and ground truth.展开更多
The aim of this article was to study the toxicity mechanism of nickel ions(Ni^(2+))on L929 cells by combining proteomics and metabolomics.First,iTRAQ-based proteomics and LC/MS metabolomics analyses were used to deter...The aim of this article was to study the toxicity mechanism of nickel ions(Ni^(2+))on L929 cells by combining proteomics and metabolomics.First,iTRAQ-based proteomics and LC/MS metabolomics analyses were used to determine the protein and metabolite expression profiles in L929 cells after treatment with 100μMNi^(2+)for 12,24 and 48 h.A total of 177,2191 and 2109 proteins and 40,60 and 74 metabolites were found to be differentially expressed.Then,the metabolic pathways in which both differentially expressed proteins and metabolites were involved were identified,and three pathways with proteins and metabolites showing upstream and downstream relationships were affected at all three time points.Furthermore,the protein-metabolite-metabolic pathway network was constructed,and two important metabolic pathways involving 4 metabolites and 17 proteins were identified.Finally,the functions of the important screened metabolic pathways,metabolites and proteins were investigated and experimentally verified.Ni^(2+)mainly affected the expression of upstream proteins in the glutathione metabolic pathway and the arginine and proline metabolic pathway,which further regulated the synthesis of downstream metabolites,reduced the antioxidant capacity of cells,increased the level of superoxide anions and the ratio of GSSG to GSH,led to oxidative stress,affected energy metabolism and induced apoptosis.展开更多
文摘针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。
文摘Integrated use of statistical process control (SPC) and engineering process control (EPC) has better performance than that by solely using SPC or EPC. But integrated scheme has resulted in the problem of “Window of Opportunity” and autocorrelation. In this paper, advanced T2 statistics model and neural networks scheme are combined to solve the above problems: use T2 statistics technique to solve the problem of autocorrelation;adopt neural networks technique to solve the problem of “Window of Opportunity” and identification of disturbance causes. At the same time, regarding the shortcoming of neural network technique that its algorithm has a low speed of convergence and it is usually plunged into local optimum easily. Genetic algorithm was proposed to train samples in this paper. Results of the simulation ex-periments show that this method can detect the process disturbance quickly and accurately as well as identify the dis-turbance type.
文摘We built a three-dimensional irregular network model which can adequately describe reservoir rock pore-throat structures. We carried out numerical simulations to study the NMR T2 distribution of water-saturated rocks. The results indicate that there is a good correlation between T2 distribution and the pore radius frequency histogram. The total T2 distribution can be partitioned into pore body and pore throat parts. The effect of parameters including throat radius, pore-throat ratio, and coordination number of the micro- pore structure on the T2 distribution can be evaluated individually. The result indicates that: 1 ) with the increase of the pore throat radius, the T2 distribution moves toward longer relaxation times and its peak intensity increases; 2) with the increase of the pore-throat ratio, the T2 distribution moves towards longer T2 with the peak intensity increasing and the overlap between pore body T2 and pore throat T2 decreasing; 3) With the increase of connectivity, the short T2 component increases and peak signal intensity decreases slightly.
基金supported by the National Natural Science Foundation of China(No.61872187).
文摘Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)framework.However,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approaches the ground-truth image distribution.Moreover,the multistage generation strategy results in complex T2I applications.Therefore,this study proposes a novel feature-grounded single-stage T2I model,which considers the“real”distribution learned from training images as one input and introduces a worst-case-optimized similarity measure into the loss function to enhance the model's generation capacity.Experimental results on two benchmark datasets demonstrate the competitive performance of the proposed model in terms of the Frechet inception distance and inception score compared to those of some classical and state-of-the-art models,showing the improved similarities among the generated image,text,and ground truth.
基金support of the National Natural Science Foundation of China(31971254).
文摘The aim of this article was to study the toxicity mechanism of nickel ions(Ni^(2+))on L929 cells by combining proteomics and metabolomics.First,iTRAQ-based proteomics and LC/MS metabolomics analyses were used to determine the protein and metabolite expression profiles in L929 cells after treatment with 100μMNi^(2+)for 12,24 and 48 h.A total of 177,2191 and 2109 proteins and 40,60 and 74 metabolites were found to be differentially expressed.Then,the metabolic pathways in which both differentially expressed proteins and metabolites were involved were identified,and three pathways with proteins and metabolites showing upstream and downstream relationships were affected at all three time points.Furthermore,the protein-metabolite-metabolic pathway network was constructed,and two important metabolic pathways involving 4 metabolites and 17 proteins were identified.Finally,the functions of the important screened metabolic pathways,metabolites and proteins were investigated and experimentally verified.Ni^(2+)mainly affected the expression of upstream proteins in the glutathione metabolic pathway and the arginine and proline metabolic pathway,which further regulated the synthesis of downstream metabolites,reduced the antioxidant capacity of cells,increased the level of superoxide anions and the ratio of GSSG to GSH,led to oxidative stress,affected energy metabolism and induced apoptosis.