The effects of T6 heat treatment on thixoforged A356 and A380 aluminium alloys were studied.Low superheat casting(LSC)technique was carried out to prepare proper specimens for thixoforging process.The samples were pou...The effects of T6 heat treatment on thixoforged A356 and A380 aluminium alloys were studied.Low superheat casting(LSC)technique was carried out to prepare proper specimens for thixoforging process.The samples were poured at 20°C above their liquidus temperatures which provided the formation of equiaxed grains instead of dendritic growth.Produced billets were reheated for varied time from 20 to 80 min and thixoforged with 50%deformation rate.After thixoforging process,the samples were T6 heat treated for both A356 and A380 alloys.The microstructural evaluation and hardness alteration of thixoforged,solution treated and aged specimens were examined comparatively by using optical microscopy,scanning electron microscopy with energy-dispersive X-ray spectroscopy and Brinell hardness equipment.T6 heat treatment provided relatively uniform microstructure with newly formed precipitates that are Mg2Si and Al2Cu for A356 and A380 billets,respectively.Accordingly,hardness after artificial aging was increased considerably and reached HB 93 for A356 and HB 120 for A380 alloys.展开更多
The effects of heat treatment on the microstructure and mechanical properties of ZA27 alloy were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM) and mechanical characterization.The results indi...The effects of heat treatment on the microstructure and mechanical properties of ZA27 alloy were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM) and mechanical characterization.The results indicated that the as-cast microstructure of the alloy was mainly composed of α,decomposed β,η and ε phases.After solid solution treatment at 365 ℃ for 1 h,α and η phases dissolved,and the microstructure of specimen was mainly composed of the supersaturated β phases.The phase decomposition of supersaturated ZA27 alloy is a two-stage phase transformation:the decomposition of the supersaturated β phase at the early stage of aging,and with the increase of aging time,ε phase decomposition through a four-phase transformation:α+ε→T '+ η.A good combination of high tensile elongation and reasonable strength can be achieved by suitable heat treatments.展开更多
The ultra high strength SiC particles (SiCp) reinforced Al-10%Zn-3.6%Mg-1.8%Cu-0.36%Zr-0.15% Ni composite was prepared by spray co-deposition. Microstructures of the extruded and different heat-treated bars were ana...The ultra high strength SiC particles (SiCp) reinforced Al-10%Zn-3.6%Mg-1.8%Cu-0.36%Zr-0.15% Ni composite was prepared by spray co-deposition. Microstructures of the extruded and different heat-treated bars were analyzed by transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS). Grain size of the composites prepared by two-stage solution is smaller than that by single-stage solution. After single-stage solution aging treatment, fine precipitates of both η and AlZnMgCu-rich phase can be found both intragranularly and intergranularly. While after the two-stage solution, an amorphous Si-Cu-Al-O (5 nm) layer appears at the interface. The addition of Ni and Zr modified the influence of the two-stage solution and inhibited the growth of the 7090/SiCp composite grain size. Heat treatments can significantly improve the fracture toughness of the composite. The fracture toughness first decreases then increases with the elongation of the aging time.展开更多
B4C/6061Al composites reinforced with nano-to micrometer-sized B4C particles were fabricated via powder metallurgy route consisting of spark plasma sintering(SPS)and hot extrusion and rolling(HER),followed by T6 treat...B4C/6061Al composites reinforced with nano-to micrometer-sized B4C particles were fabricated via powder metallurgy route consisting of spark plasma sintering(SPS)and hot extrusion and rolling(HER),followed by T6 treatment.The microstructural evolution and mechanical properties were investigated.Results showed that the status of B4C particles changed from a network after SPS to a dispersion distribution after HER.The substructured grains reached 66.5%owing to the pinning effect of nano-sized B4C,and the grain size was refined from 3.12μm to 1.56μm after HER.After T6 treatment,dispersed Mg_(2)Si precipitated phases formed,and the grain size increased to 1.87μm.Fine recrystallized grains around micro-sized B4C were smaller than those in the areas with uniform distribution of nano-sized B4C and Mg_(2)Si.The stress distributions of as-rolled and heated composites were similar,considering that the T6 heat treatment was only effective in eliminating the first internal stress.The Vickers,microhardness,and tensile strength of as-SPSed composites were greatly improved from HV 55.45,0.86 GPa,and 180 MPa to HV 77.51,1.08 GPa,and 310 MPa,respectively.Despite the precipitation strengthening,the corresponding values of as-heated composites decreased to HV 70.82,0.85 GPa,and 230 MPa owing to grain coarsening.展开更多
The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn-1.5Nd alloy subjected to extrusion and T5 treatment were investigated using optical microscopy(OM), X-ray diffractometer(XRD), scanning electron micr...The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn-1.5Nd alloy subjected to extrusion and T5 treatment were investigated using optical microscopy(OM), X-ray diffractometer(XRD), scanning electron microscopy(SEM), electron back scattered diffraction(EBSD), transmission electron microscopy(TEM), hardness tests and uniaxial tensile tests. The results showed that the as-cast alloy consisted of α(Mg), Mn, Mg7Zn3, Mg2 Sn and Mg Sn Nd phases. Dynamic recrystallization has completed during the extrusion process and the average grain size was 7.2 μm. After T5 treatment, the strength increased obviously, the yield strength and ultimate tensile strength of as-extruded alloy were increased by 94 and 34 MPa, respectively. Microstructure characterization revealed that the improvement of strength was determined by the high number density of β′1 rods.展开更多
The A356 castings were fabricated using a well-developed temperature controlled permanent mold.To improve the strength and hardness of cast A356,the microstructures and mechanical properties of as-cast and T6 heat tre...The A356 castings were fabricated using a well-developed temperature controlled permanent mold.To improve the strength and hardness of cast A356,the microstructures and mechanical properties of as-cast and T6 heat treated A356 alloy with various mold and pouring temperatures were studied.The results reveal that the undercooling is closely related to the mold and pouring temperatures.As the mold/pouring temperature changed from 258°C/680°C and 270°C/680°C to 288°C/650°C,the in-situ undercooling is 12°C,17°C and 11°C,respectively.It is observed that the Si phase changes from long continuous flake to discontinuous globular-fibrous morphology after T6 heat treatment as the mold and pouring temperature is 270°C/680°C,and the T6 heat treated specimens exhibit better mechanical properties in comparison to those as-cast ones with an increase of 162%and 102%in yield strength and elongation,which are 34.6%and 190%higher than the ASTM B108-03 a standard,respectively.As a result,the tensile fracture morphology of the as-cast A356 alloy shows quasi-cleavage fracture and the T6 heat treated A356 alloy shows ductile fracture.展开更多
The effects of Cu content on the microstructure and mechanical properties of thixoformed Al-6Si-xCu-0.3Mg(x= 3,4,5and 6,mass fraction,%) alloys were studied.The samples were thixoformed at 50%liquid content and severa...The effects of Cu content on the microstructure and mechanical properties of thixoformed Al-6Si-xCu-0.3Mg(x= 3,4,5and 6,mass fraction,%) alloys were studied.The samples were thixoformed at 50%liquid content and several of the samples were treated with the T6 heat treatment.The samples were then examined by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive X-ray(EDX) spectroscopy and X-ray diffraction(XRD) analysis,as well as hardness and tensile tests.The results show that the cooling slope casting and thixoforming process promote the formation of very fine and well distributed intermetallic compounds in the aluminium matrix and the mechanical properties of the alloys increase considerably compared with the permanent mould casting.The results also reveal that as the Cu content in the alloy increases,the hardness and tensile strength of the thixoformed alloys also increase.The ultimate tensile strength,yield strength and elongation to fracture of the thixoformed heat-treated Al-6Si-3Cu-0.3Mg alloy are 298 MPa,201 MPa and 4.5%,respectively,whereas the values of the thixoformed heat-treated alloy with high Cu content(6%) are 361 MPa,274 MPa and 1.1%,respectively.The fracture of the thixoformed Al-6Si-3Cu-0.3Mg alloy shows a dimple rupture,whereas in the alloy that contains the highest Cu content(6%),a cleavage fracture is observed.展开更多
The effect of different contents of Y, Zr and Er on microstructure and properties of Al-5 Cu-0.4 Mn alloy was investigated. T6 heat treatment, OM, SEM and EDS methods were applied to the alloy. The results showed that...The effect of different contents of Y, Zr and Er on microstructure and properties of Al-5 Cu-0.4 Mn alloy was investigated. T6 heat treatment, OM, SEM and EDS methods were applied to the alloy. The results showed that fluidity and elongation of alloy adding Y, Zr and Er were improved, while with the increase of addition amounts, θ phase increased and grains were trended to grow up gradually. The Al-5 Cu-0.4 Mn alloy presented the maxed style of ductile and brittle fracture. After T6 heat treatment, the precipitation amounts of θ phase decreased dramatically and tensile strength and hardness significantly increased. Especially when addition contents were among 0.1-0.3 wt.%, tensile strength and hardness of heat-treated alloy increased greatly, almost doubled as that of the as-cast state. The tensile strength reached its maximum of 378.43 MPa when the addition amount was 0.3 wt.%. With the further increase of addition amounts, the elongation deteriorated and the proportion of ductile fracture reduced due to the limited dispersion strengthening effect of θ phase and Al_8Cu_4 Er. It demonstrated that addition of 0.1-0.3 wt.% Y, Zr and Er would generate positive effects and influences on Al-5 Cu-0.4 Mn alloy, which is significant for optimizing components and improving properties of Al-5 Cu-0.4 Mn alloy.展开更多
The effects of Mg content on the microstructure and tensile properties of thixoformed A319 alloys were studied. The samples were thixoformed at 50% liquid content and some of the thixoformed samples were subjected to ...The effects of Mg content on the microstructure and tensile properties of thixoformed A319 alloys were studied. The samples were thixoformed at 50% liquid content and some of the thixoformed samples were subjected to the T6 heat treatment. The samples were then examined by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) analysis as well as tensile tests. The results showed that magnesium was able to refine the eutectic silicon in the samples. It was also observed that a compact Al9FeMg3Si5 phase was formed when the magnesium content was 1.0% and 1.5%. The results also revealed that as the magnesium content in the alloy increases, the tensile strengths of the thixoformed alloys also increase. The ultimate tensile strength, yield strength and elongation to fracture of the thixoformed A319 heat treated alloy were 298 MPa, 201 MPa and 4.5%, respectively, whereas the values of the thixoformed heat treated alloy with 1.5% Mg content were 325 MPa, 251 MPa and 1.4%, respectively. Thixoformed A319 alloy showed a dimple fracture behaviour, while thixoformed A319 alloys with 1.5% Mg showed a mixed mode fracture behaviour, where dimple and cleavage ruptures were seen on the fracture surface of the samples.展开更多
The effects of different Zr additions(0.05wt.%-0.5wt.%)on the structure and tensile properties of an Al-4.5Cu-0.3Mg-0.05Ti(wt.%)alloy solidified under a high cooling rate(18℃·s^(-1)),in as-cast and T6 heat-treat...The effects of different Zr additions(0.05wt.%-0.5wt.%)on the structure and tensile properties of an Al-4.5Cu-0.3Mg-0.05Ti(wt.%)alloy solidified under a high cooling rate(18℃·s^(-1)),in as-cast and T6 heat-treated conditions were studied.The as-cast structure of the alloy consists of equiaxed grains ofα-Al with an average size of 64μm which is unaffected by the Zr additions,indicating the ineffectiveness of Zr in the grain refinement of the alloy.Scanning electron microscopy,along with X-ray diffraction analysis revealed the presence of elongatedθ-Al2Cu at the grain boundaries;in addition,coarse Al3Zr particles exist in the intergranular regions of the 0.5wt.%Zr-containing alloy.After the T6 heat treatment,the elongatedθparticles were fragmented;however,the coarse Al3Zr particles remained unchanged in the microstructure.Also,the formation of fineβ’-Al3Zr andθ’’-Al3Cu/θ’-Al2Cu phases during T6 heat treatment was revealed by transmission electron microscopy.The results of the tensile tests showed that the Zr additions increase the strength of the alloy in both as-cast and T6 heat-treated conditions,but reduce its elongation,especially with 0.5wt.%Zr addition.The 0.3wt.%Zr-added alloy in the T6 heat-treated condition has the highest quality index value(249 MPa).Fractography of the fracture surfaces of the alloys revealed ductile fracture mode including dimples and cracked intermetallic phases in both conditions.展开更多
文摘The effects of T6 heat treatment on thixoforged A356 and A380 aluminium alloys were studied.Low superheat casting(LSC)technique was carried out to prepare proper specimens for thixoforging process.The samples were poured at 20°C above their liquidus temperatures which provided the formation of equiaxed grains instead of dendritic growth.Produced billets were reheated for varied time from 20 to 80 min and thixoforged with 50%deformation rate.After thixoforging process,the samples were T6 heat treated for both A356 and A380 alloys.The microstructural evaluation and hardness alteration of thixoforged,solution treated and aged specimens were examined comparatively by using optical microscopy,scanning electron microscopy with energy-dispersive X-ray spectroscopy and Brinell hardness equipment.T6 heat treatment provided relatively uniform microstructure with newly formed precipitates that are Mg2Si and Al2Cu for A356 and A380 billets,respectively.Accordingly,hardness after artificial aging was increased considerably and reached HB 93 for A356 and HB 120 for A380 alloys.
基金Project(Z2011-01-002) supported by the Nonferrous Metals Science Foundation of Hunan Nonferrous Metals Holding Group Co.Ltd.- Central South University,China
文摘The effects of heat treatment on the microstructure and mechanical properties of ZA27 alloy were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM) and mechanical characterization.The results indicated that the as-cast microstructure of the alloy was mainly composed of α,decomposed β,η and ε phases.After solid solution treatment at 365 ℃ for 1 h,α and η phases dissolved,and the microstructure of specimen was mainly composed of the supersaturated β phases.The phase decomposition of supersaturated ZA27 alloy is a two-stage phase transformation:the decomposition of the supersaturated β phase at the early stage of aging,and with the increase of aging time,ε phase decomposition through a four-phase transformation:α+ε→T '+ η.A good combination of high tensile elongation and reasonable strength can be achieved by suitable heat treatments.
基金Project (02Gky2004) supported by Hunan Provincial Science and Technology Department, China
文摘The ultra high strength SiC particles (SiCp) reinforced Al-10%Zn-3.6%Mg-1.8%Cu-0.36%Zr-0.15% Ni composite was prepared by spray co-deposition. Microstructures of the extruded and different heat-treated bars were analyzed by transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS). Grain size of the composites prepared by two-stage solution is smaller than that by single-stage solution. After single-stage solution aging treatment, fine precipitates of both η and AlZnMgCu-rich phase can be found both intragranularly and intergranularly. While after the two-stage solution, an amorphous Si-Cu-Al-O (5 nm) layer appears at the interface. The addition of Ni and Zr modified the influence of the two-stage solution and inhibited the growth of the 7090/SiCp composite grain size. Heat treatments can significantly improve the fracture toughness of the composite. The fracture toughness first decreases then increases with the elongation of the aging time.
基金Projects(51775366,51805358)supported by the National Natural Science Foundation of ChinaProject(20130321024)supported by the Key Science and Technology Program of Shanxi Province,China。
文摘B4C/6061Al composites reinforced with nano-to micrometer-sized B4C particles were fabricated via powder metallurgy route consisting of spark plasma sintering(SPS)and hot extrusion and rolling(HER),followed by T6 treatment.The microstructural evolution and mechanical properties were investigated.Results showed that the status of B4C particles changed from a network after SPS to a dispersion distribution after HER.The substructured grains reached 66.5%owing to the pinning effect of nano-sized B4C,and the grain size was refined from 3.12μm to 1.56μm after HER.After T6 treatment,dispersed Mg_(2)Si precipitated phases formed,and the grain size increased to 1.87μm.Fine recrystallized grains around micro-sized B4C were smaller than those in the areas with uniform distribution of nano-sized B4C and Mg_(2)Si.The stress distributions of as-rolled and heated composites were similar,considering that the T6 heat treatment was only effective in eliminating the first internal stress.The Vickers,microhardness,and tensile strength of as-SPSed composites were greatly improved from HV 55.45,0.86 GPa,and 180 MPa to HV 77.51,1.08 GPa,and 310 MPa,respectively.Despite the precipitation strengthening,the corresponding values of as-heated composites decreased to HV 70.82,0.85 GPa,and 230 MPa owing to grain coarsening.
基金Project(2013CB632200)supported by the National Great Theoretic Research,ChinaProject(2011BAE22B01-3)supported by the National Sci&Tech Support Program,ChinaProject(2010DFR50010)supported by the International Cooperation,Sharing Fund of Chongqing University’s Large-scale Equipment,China
文摘The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn-1.5Nd alloy subjected to extrusion and T5 treatment were investigated using optical microscopy(OM), X-ray diffractometer(XRD), scanning electron microscopy(SEM), electron back scattered diffraction(EBSD), transmission electron microscopy(TEM), hardness tests and uniaxial tensile tests. The results showed that the as-cast alloy consisted of α(Mg), Mn, Mg7Zn3, Mg2 Sn and Mg Sn Nd phases. Dynamic recrystallization has completed during the extrusion process and the average grain size was 7.2 μm. After T5 treatment, the strength increased obviously, the yield strength and ultimate tensile strength of as-extruded alloy were increased by 94 and 34 MPa, respectively. Microstructure characterization revealed that the improvement of strength was determined by the high number density of β′1 rods.
基金Natural Science Foundation of Shandong Province(ZR2016EEM48).
文摘The A356 castings were fabricated using a well-developed temperature controlled permanent mold.To improve the strength and hardness of cast A356,the microstructures and mechanical properties of as-cast and T6 heat treated A356 alloy with various mold and pouring temperatures were studied.The results reveal that the undercooling is closely related to the mold and pouring temperatures.As the mold/pouring temperature changed from 258°C/680°C and 270°C/680°C to 288°C/650°C,the in-situ undercooling is 12°C,17°C and 11°C,respectively.It is observed that the Si phase changes from long continuous flake to discontinuous globular-fibrous morphology after T6 heat treatment as the mold and pouring temperature is 270°C/680°C,and the T6 heat treated specimens exhibit better mechanical properties in comparison to those as-cast ones with an increase of 162%and 102%in yield strength and elongation,which are 34.6%and 190%higher than the ASTM B108-03 a standard,respectively.As a result,the tensile fracture morphology of the as-cast A356 alloy shows quasi-cleavage fracture and the T6 heat treated A356 alloy shows ductile fracture.
基金Universiti Teknikal Malaysia Melaka (UTeM) and the Ministry of Education Malaysia for financial support of this studyUniversiti Kebangsaan Malaysia (UKM) for the financial support under research grants GUP-2012-040 and AP-2012-014
文摘The effects of Cu content on the microstructure and mechanical properties of thixoformed Al-6Si-xCu-0.3Mg(x= 3,4,5and 6,mass fraction,%) alloys were studied.The samples were thixoformed at 50%liquid content and several of the samples were treated with the T6 heat treatment.The samples were then examined by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive X-ray(EDX) spectroscopy and X-ray diffraction(XRD) analysis,as well as hardness and tensile tests.The results show that the cooling slope casting and thixoforming process promote the formation of very fine and well distributed intermetallic compounds in the aluminium matrix and the mechanical properties of the alloys increase considerably compared with the permanent mould casting.The results also reveal that as the Cu content in the alloy increases,the hardness and tensile strength of the thixoformed alloys also increase.The ultimate tensile strength,yield strength and elongation to fracture of the thixoformed heat-treated Al-6Si-3Cu-0.3Mg alloy are 298 MPa,201 MPa and 4.5%,respectively,whereas the values of the thixoformed heat-treated alloy with high Cu content(6%) are 361 MPa,274 MPa and 1.1%,respectively.The fracture of the thixoformed Al-6Si-3Cu-0.3Mg alloy shows a dimple rupture,whereas in the alloy that contains the highest Cu content(6%),a cleavage fracture is observed.
基金financially supported by the Gansu Province Science and Technology Major Special Program Foundation of China(Grant No.1302GKDA015)
文摘The effect of different contents of Y, Zr and Er on microstructure and properties of Al-5 Cu-0.4 Mn alloy was investigated. T6 heat treatment, OM, SEM and EDS methods were applied to the alloy. The results showed that fluidity and elongation of alloy adding Y, Zr and Er were improved, while with the increase of addition amounts, θ phase increased and grains were trended to grow up gradually. The Al-5 Cu-0.4 Mn alloy presented the maxed style of ductile and brittle fracture. After T6 heat treatment, the precipitation amounts of θ phase decreased dramatically and tensile strength and hardness significantly increased. Especially when addition contents were among 0.1-0.3 wt.%, tensile strength and hardness of heat-treated alloy increased greatly, almost doubled as that of the as-cast state. The tensile strength reached its maximum of 378.43 MPa when the addition amount was 0.3 wt.%. With the further increase of addition amounts, the elongation deteriorated and the proportion of ductile fracture reduced due to the limited dispersion strengthening effect of θ phase and Al_8Cu_4 Er. It demonstrated that addition of 0.1-0.3 wt.% Y, Zr and Er would generate positive effects and influences on Al-5 Cu-0.4 Mn alloy, which is significant for optimizing components and improving properties of Al-5 Cu-0.4 Mn alloy.
基金the Universiti Teknikal Malaysia Melaka (UTeM)the Ministry of Education, Malaysia for being financial sponsorsUniversiti Kebangsaan Malaysia (UKM) for the financial support under research grants GUP-2012-040 and AP-2012-014
文摘The effects of Mg content on the microstructure and tensile properties of thixoformed A319 alloys were studied. The samples were thixoformed at 50% liquid content and some of the thixoformed samples were subjected to the T6 heat treatment. The samples were then examined by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) analysis as well as tensile tests. The results showed that magnesium was able to refine the eutectic silicon in the samples. It was also observed that a compact Al9FeMg3Si5 phase was formed when the magnesium content was 1.0% and 1.5%. The results also revealed that as the magnesium content in the alloy increases, the tensile strengths of the thixoformed alloys also increase. The ultimate tensile strength, yield strength and elongation to fracture of the thixoformed A319 heat treated alloy were 298 MPa, 201 MPa and 4.5%, respectively, whereas the values of the thixoformed heat treated alloy with 1.5% Mg content were 325 MPa, 251 MPa and 1.4%, respectively. Thixoformed A319 alloy showed a dimple fracture behaviour, while thixoformed A319 alloys with 1.5% Mg showed a mixed mode fracture behaviour, where dimple and cleavage ruptures were seen on the fracture surface of the samples.
文摘The effects of different Zr additions(0.05wt.%-0.5wt.%)on the structure and tensile properties of an Al-4.5Cu-0.3Mg-0.05Ti(wt.%)alloy solidified under a high cooling rate(18℃·s^(-1)),in as-cast and T6 heat-treated conditions were studied.The as-cast structure of the alloy consists of equiaxed grains ofα-Al with an average size of 64μm which is unaffected by the Zr additions,indicating the ineffectiveness of Zr in the grain refinement of the alloy.Scanning electron microscopy,along with X-ray diffraction analysis revealed the presence of elongatedθ-Al2Cu at the grain boundaries;in addition,coarse Al3Zr particles exist in the intergranular regions of the 0.5wt.%Zr-containing alloy.After the T6 heat treatment,the elongatedθparticles were fragmented;however,the coarse Al3Zr particles remained unchanged in the microstructure.Also,the formation of fineβ’-Al3Zr andθ’’-Al3Cu/θ’-Al2Cu phases during T6 heat treatment was revealed by transmission electron microscopy.The results of the tensile tests showed that the Zr additions increase the strength of the alloy in both as-cast and T6 heat-treated conditions,but reduce its elongation,especially with 0.5wt.%Zr addition.The 0.3wt.%Zr-added alloy in the T6 heat-treated condition has the highest quality index value(249 MPa).Fractography of the fracture surfaces of the alloys revealed ductile fracture mode including dimples and cracked intermetallic phases in both conditions.
基金Project(52001140) supported by the National Natural Science Foundation of ChinaProjects(GY2021003, GY2021020) supported by the Key Research and Development Program of Zhenjiang City,China+1 种基金Project(SJCX23_2186) supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province,ChinaProject(202310289013H) supported by Undergaduate Innovation and Entrepreneurship Training Program of Jiangsu Province,China。