对MT700、T700-A及T700-B三种碳纤维拉伸性能、表面形貌、单向板力学性能及网格加筋圆筒轴压稳定性进行逐级对比研究。结果表明:MT700碳纤维拉伸性能达到同级别进口碳纤维水平且具有高模量特征;MT700碳纤维表面均布沟槽的结构特点使得MT...对MT700、T700-A及T700-B三种碳纤维拉伸性能、表面形貌、单向板力学性能及网格加筋圆筒轴压稳定性进行逐级对比研究。结果表明:MT700碳纤维拉伸性能达到同级别进口碳纤维水平且具有高模量特征;MT700碳纤维表面均布沟槽的结构特点使得MT700/603复合材料体系表现出良好的界面性能和拉伸-压缩匹配性,单向板压缩强度、层剪强度及弯曲强度均明显高于T700-A/603和T700-B/603;MT700/603网格加筋圆筒轴压破坏强度及模量分别达到870 k N和108.2 GPa,相比于T700-B/603分别提高11.5%和33.1%。MT700碳纤维更适用于制备航天领域结构复杂承力构件。展开更多
利用双螺杆挤出机熔融共混的方法制备了不同含量的碳纤维(CF)与尼龙共聚物(PA6T/66)复合材料,通过差示扫描量热仪、热重分析仪、扫描电子显微镜和力学性能测试研究了该复合材料的热性能、力学性能和断面形态结构。结果显示,复合材料的...利用双螺杆挤出机熔融共混的方法制备了不同含量的碳纤维(CF)与尼龙共聚物(PA6T/66)复合材料,通过差示扫描量热仪、热重分析仪、扫描电子显微镜和力学性能测试研究了该复合材料的热性能、力学性能和断面形态结构。结果显示,复合材料的起始分解温度均在400℃以上,熔点都在300℃左右。随着CF含量的增加,复合材料的拉伸强度、弯曲强度和冲击强度都相应增加,当CF质量分数达到40%时,复合材料的拉伸强度、弯曲强度和冲击强度分别达到最大值:226.1 MPa、354.7 MPa、54.1 k J/m2。展开更多
文摘对MT700、T700-A及T700-B三种碳纤维拉伸性能、表面形貌、单向板力学性能及网格加筋圆筒轴压稳定性进行逐级对比研究。结果表明:MT700碳纤维拉伸性能达到同级别进口碳纤维水平且具有高模量特征;MT700碳纤维表面均布沟槽的结构特点使得MT700/603复合材料体系表现出良好的界面性能和拉伸-压缩匹配性,单向板压缩强度、层剪强度及弯曲强度均明显高于T700-A/603和T700-B/603;MT700/603网格加筋圆筒轴压破坏强度及模量分别达到870 k N和108.2 GPa,相比于T700-B/603分别提高11.5%和33.1%。MT700碳纤维更适用于制备航天领域结构复杂承力构件。
文摘利用双螺杆挤出机熔融共混的方法制备了不同含量的碳纤维(CF)与尼龙共聚物(PA6T/66)复合材料,通过差示扫描量热仪、热重分析仪、扫描电子显微镜和力学性能测试研究了该复合材料的热性能、力学性能和断面形态结构。结果显示,复合材料的起始分解温度均在400℃以上,熔点都在300℃左右。随着CF含量的增加,复合材料的拉伸强度、弯曲强度和冲击强度都相应增加,当CF质量分数达到40%时,复合材料的拉伸强度、弯曲强度和冲击强度分别达到最大值:226.1 MPa、354.7 MPa、54.1 k J/m2。