期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
TEM Characterization of Helium Bubbles in T91 and MNHS Steels Implanted with 200 keV He Ions at Different Temperatures
1
作者 王霁 高星 +14 位作者 王志光 魏孔芳 姚存峰 崔明焕 孙建荣 李炳生 庞立龙 朱亚滨 骆鹏 常海龙 张宏鹏 朱卉平 王栋 杜洋洋 谢二庆 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第7期102-105,共4页
Modified novel high silicon steel (MNHS, a newly developed reduced-activation martensitic alloy) and commercial alloy Tgl are implanted with 200 keV He2+ ions to a dose of 5 × 1020 ions/m2 at 300, 450 and 560~... Modified novel high silicon steel (MNHS, a newly developed reduced-activation martensitic alloy) and commercial alloy Tgl are implanted with 200 keV He2+ ions to a dose of 5 × 1020 ions/m2 at 300, 450 and 560~C. Transmission electron microscopy (TEM) is used to characterize the size and morphology of He bubbles. With the increase of the implantation temperature, TEM observations indicate that bubbles increase in size and the proportion of 'brick shaped' cuboid bubbles increases while the proportion of polyhedral bubbles decreases in both the steel samples. For the samples implanted at the same temperature, the average size of He bubbles in MNHS is smaller than that in T91. This might be due to the abundance of boundaries and precipitates in MNHS, which provide additional sites for the trapping of He atoms, thus reduce the susceptibility of MNHS to He embrittlement. 展开更多
关键词 TEM Characterization of Helium Bubbles in t91 and MNHS steels Implanted with 200 keV He Ions at Different Temperatures
下载PDF
Effects of Austenite Stabilization on the Onset of Martensite Transformation in T91 Steel 被引量:2
2
作者 Baoqun NING Yongchang LIU +2 位作者 Qingzhi SHI Zhiming GAO Liushuan YANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第2期202-206,共5页
The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase t... The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase transformation kinetic information was obtained by adopting lever rule from the recorded dilatometric curves. The results show that an inverse stabilization, featured by the damage of "the atmosphere of carbon atoms" and the increase of the starting temperature for martensite transformation takes place when the T91 ferritic steel is isothermally treated above the Ms point, and it becomes strong with increasing the holding time. While the continued temperature for martensite transformation decreases gradually when isothermally holding at a temperature below Ms point. The observed inverse stabilization behavior could be attributed to the relatively high temperature of Ms point in the explored T91 ferritic heat-resistant steel. 展开更多
关键词 t91 ferritic heat-resistant steel Austenitic thermal stabilization MARTENSITE MICROSTRUCTURE
下载PDF
Compatibility of T91 steel with liquid Pb-Bi eutectic alloy at 450℃ 被引量:1
3
作者 Zhang Yutuo Dong Hong +1 位作者 Wang Pei Ye Zhongfei 《China Foundry》 SCIE CAS 2014年第3期197-200,共4页
Pb-Bi eutectic alloy has been receiving increasing attention as a heavy liquid metal coolant in accelerator driven systems and Generation IV fission reactors. Compatibility of structural materials with liquid PbBi eut... Pb-Bi eutectic alloy has been receiving increasing attention as a heavy liquid metal coolant in accelerator driven systems and Generation IV fission reactors. Compatibility of structural materials with liquid PbBi eutectic alloy at high temperature is one of the issues concerned. In the present study, corrosion tests of T91 steel in stagnant Pb-Bi eutectic alloy in saturated oxygen condition at 450 oC were carried out. After experiments, the thickness and compositional profile of the oxide layer on the specimen were analyzed using SEM and EDX. Analysis results show that the thickness of the oxide layer increases as the exposure time increases from 500 h to 1,000 h. The thickness of the oxide layer remains almost unchanged at 15 to 16 mm from 1,000 to 1,500 h. Formation of a thick and protective oxide layer at 450 oC prevents the penetration of liquid Pb-Bi eutectic alloy into the matrix of the T91 steel. 展开更多
关键词 t91 steel Pb-Bi eutectic alloy compatibility OXIDE
下载PDF
Microstructure evolution of T91 steel after heavy ion irradiation at 550℃
4
作者 宋力刚 黄波 +6 位作者 李江华 马显锋 李阳 方泽华 刘敏 蒋季伸 胡琰莹 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期61-69,共9页
Fe-Cr ferritic/martensitic(F/M)steels have been proposed as one of the candidate materials for the Generation IV nuclear technologies.In this study,a widely-used ferritic/martensitic steel,T91 steel,was irradiated by ... Fe-Cr ferritic/martensitic(F/M)steels have been proposed as one of the candidate materials for the Generation IV nuclear technologies.In this study,a widely-used ferritic/martensitic steel,T91 steel,was irradiated by 196-MeV Kr^(+)ions at 550℃.To reveal the irradiation mechanism,the microstructure evolution of irradiated T91 steel was studied in details by transmission electron microscope(TEM).With increasing dose,the defects gradually changed from black dots to dislocation loops,and further to form dislocation walls near grain boundaries due to the production of a large number of dislocations.When many dislocation loops of primary a0/2<111>type with high migration interacted with other defects or carbon atoms,it led to the production of dislocation segments and other dislocation loops of a0<100>type.Lots of defects accumulated near grain boundaries in the irradiated area,especially in the high-dose area.The grain boundaries of martensite laths acted as important sinks of irradiation defects in T91.Elevated temperature facilitated the migration of defects,leading to the accumulation of defects near the grain boundaries of martensite laths. 展开更多
关键词 t91 steel high energy Kr ions irradiation irradiation defects transmission electron microscope(TEM)
下载PDF
Microstructural Evolution on the T91 Dissimilar Metal Joints during Creep Rupture Tests
5
作者 GuangminLUO JianshengWU QingsenMENG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第4期383-386,共4页
T91 steel is one of the new materials presently employed in power plant pipe components. The creep rupture strength and microstructure of the T91+10CrMo910 and T91+13CrMo44 welded joints were analyzed during creep rup... T91 steel is one of the new materials presently employed in power plant pipe components. The creep rupture strength and microstructure of the T91+10CrMo910 and T91+13CrMo44 welded joints were analyzed during creep rupture tests. Creep transgranular ductile rupture occurred at the 10CrMo910 matrix in the T91+10CrMo910 welded joints and creep intergranular brittle rupture occurred at the 13CrMo44 HAZ in the T91+13CrMo44 joints. Microhardness measurements showed high hardness at the heat affected zone (HAZ) of T91 and a sharply drop at the 13CrMo44 HAZ during creep rupture. The metallographic tests showed that no obvious microstructure degradation was observed in the 10CrMo910 HAZ and matrix, while creep cracks appeared at the 13CrMo44 HAZ. T91 steel had relatively high creep resistant strength in the welded joints tested. Recovery occurred in the T91 HAZ with the growth of subgrain size and the decrease of dislocation density during creep. It was concluded that the dissimilar joints of T91 and low alloy heat-resistant steel should have close creep strength matching to increase the service life of the overall joints at elevated temperature. 展开更多
关键词 t91 steel Dissimilar metal joint Creep rupture test
下载PDF
Microstructure and Fracture Morphology in the Welding Zone of T91 Heat-resisting Steel Used in Power Station
6
作者 YajiangLI BingZHOU +1 位作者 TaoFENG JiangweiREN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第5期427-430,共4页
Microstructure performance in the welding zone of T91 heat-resistant steel under the condition of TIG welding was researched by means of metallography, X-ray diffraction and scanning electron microscope (SEM). Experim... Microstructure performance in the welding zone of T91 heat-resistant steel under the condition of TIG welding was researched by means of metallography, X-ray diffraction and scanning electron microscope (SEM). Experimental results indicated that microstructure of T91 weld metal was austenite + a little amount of S ferrite when using TGS-9cb filler wire. Substructure inside the austenite grain was crypto-crystal lath martensite, on which some Cr23C6 blocky carbides were distributed. The maximum hardness (HRC44) in the welding zone is near the fusion zone. There existed no obvious softening zone in the heat-affected zone (HAZ). For T91 steel tube of $63 mmx5 mm, when increasing welding heat input (E) from 4.8 kJ/cm to 12 5 kJ/cm, fracture morphology in the fusion zone and the HAZ changed from dimple fracture into quasi-cleavage fracture (QC). Controlling the welding heat input of about 9.8 kJ/cm is suitable in the welding of T91 heat-resistant steel. 展开更多
关键词 t91 heat-resistant steel. Welding. Microsrructure
下载PDF
Microstructure Evolution of T91 Heat-Resistant Steels after Long-Time Aging 被引量:1
7
作者 WAN Qiang HU Wenlong +2 位作者 LI Zhenggang CHEN Yanming YANG Bing 《Wuhan University Journal of Natural Sciences》 CAS 2013年第1期73-78,共6页
To investigate the evolution of microstructure damage degree and the precipitated phases of heat-resistant metal in power plant under high temperature and stress environment, the high- temperature aging tests were con... To investigate the evolution of microstructure damage degree and the precipitated phases of heat-resistant metal in power plant under high temperature and stress environment, the high- temperature aging tests were conducted to investigate the aging behavior of T91 steel at different temperatures and stress. The optical microscopy, scanning electron microscopy, and transmis- sion electron microscopy were used to investigate the structure and precipitated phases, the results showed that the orientation characteristics of tempered martensite was dispersed, and the grain size is obviously increased. The density of dislocation decreased with increasing temperature and stress. The important strengthen- ing phase of M23C6 (M=Fe, Cr) was coarsened by the diffusion of main alloying elements Cr, while the smaller size MX (M=Nb,V; X=C, N) phase distributed in the grain is relatively stable in the aging. 展开更多
关键词 t91 steel aging test PRECIPITATION EVOLUTION
原文传递
Effect of silicon on ductility of T91 steel in liquid lead-bismuth eutectic environment
8
作者 Ji Li Xi-kou He +2 位作者 Gang Yang Bin Xu Zheng-xin Tang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第2期363-374,共12页
The tensile tests of T91 and T91Si steels at 200-450℃in air and at 350℃in oxygen-depleted liquid lead-bismuth eutectic(LBE)environment with strain rate of 1×10^(-5)-5×10^(-3)were performed.Results show tha... The tensile tests of T91 and T91Si steels at 200-450℃in air and at 350℃in oxygen-depleted liquid lead-bismuth eutectic(LBE)environment with strain rate of 1×10^(-5)-5×10^(-3)were performed.Results show that the activation energy of T91 steel is 103.45-246.76 kJ/mol and that of T91Si steel is 146.98-172.11 kJ/mol when Portevin-Le Chatelie(PLC)phenomenon occurs.The elongation reduction of T91 steel at 350℃is not specific to LBE environment,whereas the presence of LBE promotes crack initiation and propagation and affects the elongation of the material in the necking stage.With Si addition,the elongation,especially the uniform elongation at 350℃in LBE environment,improves,and the tendency toward crack propagation in T91 steel after slow tensile necking is reduced.The PLC phenomenon can be seen in both T91 and T91Si steels at high temperatures owing to the dynamic strain aging(DSA).The temperature ranges are different when DSA occurs,with 300-350℃and 250-350℃for T91 and T91Si steels,respectively. 展开更多
关键词 Dynamic strain aging Liquid lead-bismuth eutectic Silicon content t91 steel Portevin-Le Chatelie
原文传递
Microstructure Evolution in 9Cr Martensitic Steel During Long-Term Creep at 650℃ 被引量:2
9
作者 HU Zheng-fei WANG Qi-jiang ZHANG Bin 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2012年第7期55-59,共5页
Standardarized creep and rupture strength tests were conducted for commercial T91 martensitic heat-resistant steel at 650℃and corresponding microstructure was characterized by BSED, TEM and EDS. The martensitic micro... Standardarized creep and rupture strength tests were conducted for commercial T91 martensitic heat-resistant steel at 650℃and corresponding microstructure was characterized by BSED, TEM and EDS. The martensitic microstructure degenerated seriously during creep exposure, including martensitic substructure recovering, carbides coarsening, dissolving and precipitating. EDS analysis shows that the M23C6 carbides in different morphologies have dissimilar compositions. The rod/sheet like M23 C6 particles within the matrix contain more additions, which might precipitate in situ while fine MX particles were re-solving. The high content of silicon in these rod/sheet like M2aC6 carbides is probably related to self diffusion coefficient increasing for the exposed condition at 650 ~C close to Curie temperature To. For those reasons, martensite substructure becomes unstable, and microstructure evolution is accelerated and leads to creep strength deteriorating severely. 展开更多
关键词 t91 steel creep strength microstructure CARBIDE COARSENING SELF-DIFFUSION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部