The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitat...The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitatively studied through isothermal compression tests.It is found that the dynamic globularization kinetics and the kinetics rate of TA15 are sensitive to deformation parameters.The dynamic globularized fraction increases with increasing strain,temperature but decreasing strain rate.The variation of globularized fraction with strain approximately follows an Avrami type equation.Using the Avrami type equation,the initiation and completion strains for dynamic globularization of TA15 were predicted to be 0.34-0.59 and 3.40-6.80.The kinetics rate of dynamic globularization increases with strain at first,then decreases.The peak value of kinetics rate,which corresponds to 20%-33% globularization fraction,increases with increasing temperature and decreasing strain rate.展开更多
Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distri...Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density.展开更多
A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleati...A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleation of the β-DDRX and the growth of recrystallized grains(re-grains) were considered and visibly simulated by the CA model.The driving force of re-grain growth was provided by dislocation density accumulating around the grain boundaries.To verify the CA model,the predicted flow stress by the CA model was compared with the experimental data.The comparison showed that the average relative errors were10.2%,10.1%and 6%,respectively,at 1.0,0.1 and 0.01 s^-1 of 1020 ℃,and were 10.2%,11.35%and 7.5%,respectively,at 1.0,0.1and 0.01 s^-1 of 1050 ℃.The CA model was further applied to predicting the average growth rate,average re-grain size and recrystallization kinetics.The simulated results showed that the average growth rate increases with the increasing strain rate or temperature,while the re-grain size increases with the decreasing strain rate;the volume fraction of recrystallization decreases with the increasing strain rate or decreasing temperature.展开更多
The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstruc...The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstructure morphology is mainly affected by loading direction. When the sample is compressed along normal direction, microstructure on the section vertical to normal direction has equiaxed primaryαphase but microstructure on the section vertical to rolling direction has strip primaryαphase with long axis along tangential direction. When the sample is compressed along rolling direction, microstructure on the section vertical to normal direction has strip primaryαphase elongated along tangential direction but microstructure on the section vertical to rolling direction consists of strip and irregular broad-band primaryαphase. The strip primaryαphase aspect ratio is smaller at lower temperature due to the dynamic break-down ofαphase. The difference on primaryαphase aspect ratio between different sections decreases after compression along distinct directions in two loading passes, suggesting the improvement of equiaxity of primaryαphase.展开更多
To study deformation banding inβworking of TA15titanium alloy,hot simulation compression experiments were carried out on a Gleeble3500thermal simulator,and the microstructure was investigated by optical microscopy(OM...To study deformation banding inβworking of TA15titanium alloy,hot simulation compression experiments were carried out on a Gleeble3500thermal simulator,and the microstructure was investigated by optical microscopy(OM)and electron backscattered diffraction(EBSD).It is found that inβworking of TA15titanium alloy,deformation banding is still an important grain refinement mechanism up to temperature as high as0.7Tm(Tm is the melting temperature).Boundaries of deformation bands(DBBs)may be sharp or diffusive.Sharp DBBs retard discontinuous dynamic recrystallization(DDRX)by prohibiting nucleation,while the diffusive ones are sources of continuous dynamic recrystallization(CDRX).Deformation banding is more significant at high strain rate and large initial grain size.The average width of grain subdivisions is sensitive to strain rate but less affected by temperature and initial grain size.Multi-directional forging which produces crossing DDBs is potential to refine microstructure of small-size forgings.展开更多
In order to form large-diameter thin-wall cylindrical workpieces of TA15 titanium alloy,tube hot spinning experiments of the alloy were conducted on a CNC hot spinning machine.The causes of some forming defects occuri...In order to form large-diameter thin-wall cylindrical workpieces of TA15 titanium alloy,tube hot spinning experiments of the alloy were conducted on a CNC hot spinning machine.The causes of some forming defects occuring in hot spinning,such as crack,pileup,bulge and corrugation,were analyzed and the corresponding measures were put forward to avoid spinning defects,based on which a proper process scheme of hot spinning of TA15 alloy was obtained and the large-diameter and thin-walled cylindrical workpieces were formed with good quality.The results show that spinning temperature has distinct influence on forming quality of spun workpieces.The range of spinning temperature determines the spinnability of titanium alloy and the ununiformity of temperature distribution near the deformation zone leads to the formation of bulge.The reasonable heating method is that the deforming region is heated to the optimum temperature range of 600-700 ℃,the deformed region is heated continuously and a certain length of undeformed region is preheated.With the thickness-to-diameter ratio(t/D) of spun workpiece reducing to certain value(t/D<1%),surface bulge and corrugation is rather easier to come into being,which could be controlled through restraining diameter growth and employing smaller reduction rate and lower temperature in the optimum spinning temperature range.展开更多
The samples of TA15 titanium alloy were hot compressed in the temperature range of 550-1 000℃at constant strain rate from 0.01 s-1 to 1.0 s-1.The flow behavior and microstructural evolution during hot deformation of ...The samples of TA15 titanium alloy were hot compressed in the temperature range of 550-1 000℃at constant strain rate from 0.01 s-1 to 1.0 s-1.The flow behavior and microstructural evolution during hot deformation of TA15 alloy were investigated, based on which the hot working parameters of TA15 alloy were selected. The results show that with the increase of deformation temperature and decrease of stain rate, the flow stress decreases gradually, but the magnitude of stress drop varies with the increase of temperature in different temperature intervals. According to the flow stress and deformation microstructure, the deformation behavior can be classified into three types as working hardening(550-600℃,α+βphase), dynamic recrystallization (650-900℃,α+βphase) and dynamic recovery(950-1 000℃,βphase). The main softening mechanism is dynamic recrystallization(DRX) ofαphase inα+βphase zone and dynamic recovery(DRV) ofβphase inβphase zone. As the stain rate decreases dynamic recrystallization ofαphase proceeds more adequately inα+βzone and theβsubgrains of dynamic recovery have the tendency to grow inβzone. The reasonable temperature for warm forming of TA15 alloy is in the range of 600-700℃, which has been verified by warm spinning experiment of tube workpieces.展开更多
The microstructure, phase composition and cold shut defect of thick titanium alloy electron beam welded joint were studied. The results showed that the microstructure of weld zone was composed of α′ phase; the heat ...The microstructure, phase composition and cold shut defect of thick titanium alloy electron beam welded joint were studied. The results showed that the microstructure of weld zone was composed of α′ phase; the heat affected zone was divided into fine-grained zone and coarse-grained zone, the microstructure of fine-grained zone was primary α phase + β phase + equiaxed α phase, and the microstructure of coarse-grained zone was primary α phase + acicular α′ phase; the microstructure of base metal zone basically consisted of primary α phase, and a small amount of residual β phase sprinkled. The forming. reason of cold shut was analyzed, and the precaution of cold shut was proposed.展开更多
Effects of friction stir spot processing(FSSP)on the microstructures and microhardness of tungsten inert gas(TIG)welded TA15titanium alloy joints were investigated.The macro/micro structural observation and microhardn...Effects of friction stir spot processing(FSSP)on the microstructures and microhardness of tungsten inert gas(TIG)welded TA15titanium alloy joints were investigated.The macro/micro structural observation and microhardness evaluation of the TA15alloy sheets and TA15TIG welded joints were carried out using optical microscope and microhardness tests.The results show that FSSP effectively improves the microstructure and increases the microhardness of the TA15sheets.As for the TIG welded joints,FSSP also effectively improves the microstructure of joints.And the average microhardness value in weld nugget zone is improved significantly,while a small increase of this value in heat affected zone is observed.The hardness in stirring zone is significantly higher than that in the base metal.Two peak values of hardness appear along the width direction in stirring zone.After FSSP,the average hardness of the weld zone of TA15TIG welded joint is significantly higher than that before FSSP.Under the present process parameters,both the surface oxidation in TA15sheets and in TIG welded joints after FSSP are not evident,while the surface forms the bright white layer,which is composed of a great multitude of fine grains.展开更多
基金Project(50935007)supported by the National Natural Science Foundation of ChinaProject(2010CB731701)supported by the National Basic Research Program of China
文摘The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitatively studied through isothermal compression tests.It is found that the dynamic globularization kinetics and the kinetics rate of TA15 are sensitive to deformation parameters.The dynamic globularized fraction increases with increasing strain,temperature but decreasing strain rate.The variation of globularized fraction with strain approximately follows an Avrami type equation.Using the Avrami type equation,the initiation and completion strains for dynamic globularization of TA15 were predicted to be 0.34-0.59 and 3.40-6.80.The kinetics rate of dynamic globularization increases with strain at first,then decreases.The peak value of kinetics rate,which corresponds to 20%-33% globularization fraction,increases with increasing temperature and decreasing strain rate.
文摘Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density.
基金Projects (50935007,51175428) supported by the National Natural Science Foundation of ChinaProject (2010CB731701) supported by the National Basic Research Program of China+2 种基金Project (NPU-FFR-JC20100229) supported by the Foundation for Fundamental Research of Northwestern Polytechnical University in ChinaProject (27-TZ-2010) supported by the Research Fund of the State Key Laboratory of Solidification Processing,ChinaProject (B08040) supported by the Program of Introducing Talents of Discipline to University,China
文摘A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleation of the β-DDRX and the growth of recrystallized grains(re-grains) were considered and visibly simulated by the CA model.The driving force of re-grain growth was provided by dislocation density accumulating around the grain boundaries.To verify the CA model,the predicted flow stress by the CA model was compared with the experimental data.The comparison showed that the average relative errors were10.2%,10.1%and 6%,respectively,at 1.0,0.1 and 0.01 s^-1 of 1020 ℃,and were 10.2%,11.35%and 7.5%,respectively,at 1.0,0.1and 0.01 s^-1 of 1050 ℃.The CA model was further applied to predicting the average growth rate,average re-grain size and recrystallization kinetics.The simulated results showed that the average growth rate increases with the increasing strain rate or temperature,while the re-grain size increases with the decreasing strain rate;the volume fraction of recrystallization decreases with the increasing strain rate or decreasing temperature.
基金Projects (50935007,51205317) supported by the National Natural Science Foundation of ChinaProject (2010CB731701) supported by the National Basic Research Program of ChinaProject (B08040) supported by Research Fund of the 111 Project
文摘The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstructure morphology is mainly affected by loading direction. When the sample is compressed along normal direction, microstructure on the section vertical to normal direction has equiaxed primaryαphase but microstructure on the section vertical to rolling direction has strip primaryαphase with long axis along tangential direction. When the sample is compressed along rolling direction, microstructure on the section vertical to normal direction has strip primaryαphase elongated along tangential direction but microstructure on the section vertical to rolling direction consists of strip and irregular broad-band primaryαphase. The strip primaryαphase aspect ratio is smaller at lower temperature due to the dynamic break-down ofαphase. The difference on primaryαphase aspect ratio between different sections decreases after compression along distinct directions in two loading passes, suggesting the improvement of equiaxity of primaryαphase.
基金Projects(51205317,51575449)supported by the National Natural Science Foundation of ChinaProject(50935007)supported by the National Natural Science Foundation of China for Key Program+1 种基金Project(3102015AX004)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(104-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing,China
文摘To study deformation banding inβworking of TA15titanium alloy,hot simulation compression experiments were carried out on a Gleeble3500thermal simulator,and the microstructure was investigated by optical microscopy(OM)and electron backscattered diffraction(EBSD).It is found that inβworking of TA15titanium alloy,deformation banding is still an important grain refinement mechanism up to temperature as high as0.7Tm(Tm is the melting temperature).Boundaries of deformation bands(DBBs)may be sharp or diffusive.Sharp DBBs retard discontinuous dynamic recrystallization(DDRX)by prohibiting nucleation,while the diffusive ones are sources of continuous dynamic recrystallization(CDRX).Deformation banding is more significant at high strain rate and large initial grain size.The average width of grain subdivisions is sensitive to strain rate but less affected by temperature and initial grain size.Multi-directional forging which produces crossing DDBs is potential to refine microstructure of small-size forgings.
文摘In order to form large-diameter thin-wall cylindrical workpieces of TA15 titanium alloy,tube hot spinning experiments of the alloy were conducted on a CNC hot spinning machine.The causes of some forming defects occuring in hot spinning,such as crack,pileup,bulge and corrugation,were analyzed and the corresponding measures were put forward to avoid spinning defects,based on which a proper process scheme of hot spinning of TA15 alloy was obtained and the large-diameter and thin-walled cylindrical workpieces were formed with good quality.The results show that spinning temperature has distinct influence on forming quality of spun workpieces.The range of spinning temperature determines the spinnability of titanium alloy and the ununiformity of temperature distribution near the deformation zone leads to the formation of bulge.The reasonable heating method is that the deforming region is heated to the optimum temperature range of 600-700 ℃,the deformed region is heated continuously and a certain length of undeformed region is preheated.With the thickness-to-diameter ratio(t/D) of spun workpiece reducing to certain value(t/D<1%),surface bulge and corrugation is rather easier to come into being,which could be controlled through restraining diameter growth and employing smaller reduction rate and lower temperature in the optimum spinning temperature range.
文摘The samples of TA15 titanium alloy were hot compressed in the temperature range of 550-1 000℃at constant strain rate from 0.01 s-1 to 1.0 s-1.The flow behavior and microstructural evolution during hot deformation of TA15 alloy were investigated, based on which the hot working parameters of TA15 alloy were selected. The results show that with the increase of deformation temperature and decrease of stain rate, the flow stress decreases gradually, but the magnitude of stress drop varies with the increase of temperature in different temperature intervals. According to the flow stress and deformation microstructure, the deformation behavior can be classified into three types as working hardening(550-600℃,α+βphase), dynamic recrystallization (650-900℃,α+βphase) and dynamic recovery(950-1 000℃,βphase). The main softening mechanism is dynamic recrystallization(DRX) ofαphase inα+βphase zone and dynamic recovery(DRV) ofβphase inβphase zone. As the stain rate decreases dynamic recrystallization ofαphase proceeds more adequately inα+βzone and theβsubgrains of dynamic recovery have the tendency to grow inβzone. The reasonable temperature for warm forming of TA15 alloy is in the range of 600-700℃, which has been verified by warm spinning experiment of tube workpieces.
基金Project (2010CB731704) supported by the National Basic Research Program of China
文摘The microstructure, phase composition and cold shut defect of thick titanium alloy electron beam welded joint were studied. The results showed that the microstructure of weld zone was composed of α′ phase; the heat affected zone was divided into fine-grained zone and coarse-grained zone, the microstructure of fine-grained zone was primary α phase + β phase + equiaxed α phase, and the microstructure of coarse-grained zone was primary α phase + acicular α′ phase; the microstructure of base metal zone basically consisted of primary α phase, and a small amount of residual β phase sprinkled. The forming. reason of cold shut was analyzed, and the precaution of cold shut was proposed.
基金Project(51405389) supported by the National Natural Science Foundation of ChinaProject(3102015ZY024) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2014003) supported by the Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,China
文摘Effects of friction stir spot processing(FSSP)on the microstructures and microhardness of tungsten inert gas(TIG)welded TA15titanium alloy joints were investigated.The macro/micro structural observation and microhardness evaluation of the TA15alloy sheets and TA15TIG welded joints were carried out using optical microscope and microhardness tests.The results show that FSSP effectively improves the microstructure and increases the microhardness of the TA15sheets.As for the TIG welded joints,FSSP also effectively improves the microstructure of joints.And the average microhardness value in weld nugget zone is improved significantly,while a small increase of this value in heat affected zone is observed.The hardness in stirring zone is significantly higher than that in the base metal.Two peak values of hardness appear along the width direction in stirring zone.After FSSP,the average hardness of the weld zone of TA15TIG welded joint is significantly higher than that before FSSP.Under the present process parameters,both the surface oxidation in TA15sheets and in TIG welded joints after FSSP are not evident,while the surface forms the bright white layer,which is composed of a great multitude of fine grains.