车联网(Vehicle to Everything,V2X)通信被认为是未来无线通信网络最重要的应用之一。然而,车辆在高速移动时引起的高多普勒频移会严重恶化V2X通信链路的性能。正交时频空(Orthogonal Time Frequency Space,OTFS)调制技术可以将时间和...车联网(Vehicle to Everything,V2X)通信被认为是未来无线通信网络最重要的应用之一。然而,车辆在高速移动时引起的高多普勒频移会严重恶化V2X通信链路的性能。正交时频空(Orthogonal Time Frequency Space,OTFS)调制技术可以将时间和频率选择性信道转换为时延-多普勒(Delay-Doppler,DD)域的非选择性信道,从而显著提高无线通信系统在高移动性场景下的性能,在V2X通信中具有重要的应用价值。但OTFS调制技术极大地增加了系统接收端的复杂度,研究低复杂度信号检测算法成为了新一代无线通信系统采用OTFS调制的关键问题之一。为此,综述了面向车联网V2X通信的OTFS信号检测算法。首先介绍了OTFS系统模型,然后概述了现有的低复杂度OTFS信号检测算法,并将其分为线性检测算法、消息传递(Message Passing,MP)检测算法及其改进算法、基于神经网络的检测算法3类,最后探讨了V2X通信中OTFS信号检测目前所面临的技术挑战与未来的发展趋势。展开更多
随着无线技术的快速发展,无线设备呈现爆炸式增长趋势,导致频谱资源日益稀缺,雷达和通信频段不断重叠。为了避免无线通信和雷达感知之间的相互干扰,学术界广泛研究了通信感知一体化(Integrated Sensing and Communication,ISAC)技术,并...随着无线技术的快速发展,无线设备呈现爆炸式增长趋势,导致频谱资源日益稀缺,雷达和通信频段不断重叠。为了避免无线通信和雷达感知之间的相互干扰,学术界广泛研究了通信感知一体化(Integrated Sensing and Communication,ISAC)技术,并且重点关注了正交时频空(Orthogonal Time Frequency Space,OTFS)信号。OTFS信号具备实现无线通信与雷达感知一体化的潜力。然而,分数多普勒会抬高OTFS多普勒旁瓣,引起多普勒弥散效应,不仅在通信数据与通信数据之间、通信数据与雷达数据之间产生严重干扰,还将导致微弱目标被强目标旁瓣淹没,进而影响雷达探测概率和通信信道估计精度,恶化整体性能。针对分数多普勒导致的OTFS性能下降问题,提出了基于原型滤波器的OTFS通感一体化信号设计方法。通过原型滤波器调理多普勒旁瓣,在不显著损失多普勒分辨率的同时,抑制多普勒弥散效应,提升检测概率,降低误码率。针对OTFS互相关匹配滤波信道估计算法计算复杂度高等问题,进一步提出了利用恒虚警率(Constant False Alarm Rate,CFAR)检测进行信道估计的思路,在降低计算复杂度的同时,稳健检测出了同一时延、不同多普勒的多个目标,保障了信道估计和目标检测性能。依据理论分析和仿真实验可知,本文可将分数多普勒条件下的通信误码率降低2个数量级。展开更多
文摘车联网(Vehicle to Everything,V2X)通信被认为是未来无线通信网络最重要的应用之一。然而,车辆在高速移动时引起的高多普勒频移会严重恶化V2X通信链路的性能。正交时频空(Orthogonal Time Frequency Space,OTFS)调制技术可以将时间和频率选择性信道转换为时延-多普勒(Delay-Doppler,DD)域的非选择性信道,从而显著提高无线通信系统在高移动性场景下的性能,在V2X通信中具有重要的应用价值。但OTFS调制技术极大地增加了系统接收端的复杂度,研究低复杂度信号检测算法成为了新一代无线通信系统采用OTFS调制的关键问题之一。为此,综述了面向车联网V2X通信的OTFS信号检测算法。首先介绍了OTFS系统模型,然后概述了现有的低复杂度OTFS信号检测算法,并将其分为线性检测算法、消息传递(Message Passing,MP)检测算法及其改进算法、基于神经网络的检测算法3类,最后探讨了V2X通信中OTFS信号检测目前所面临的技术挑战与未来的发展趋势。
文摘随着无线技术的快速发展,无线设备呈现爆炸式增长趋势,导致频谱资源日益稀缺,雷达和通信频段不断重叠。为了避免无线通信和雷达感知之间的相互干扰,学术界广泛研究了通信感知一体化(Integrated Sensing and Communication,ISAC)技术,并且重点关注了正交时频空(Orthogonal Time Frequency Space,OTFS)信号。OTFS信号具备实现无线通信与雷达感知一体化的潜力。然而,分数多普勒会抬高OTFS多普勒旁瓣,引起多普勒弥散效应,不仅在通信数据与通信数据之间、通信数据与雷达数据之间产生严重干扰,还将导致微弱目标被强目标旁瓣淹没,进而影响雷达探测概率和通信信道估计精度,恶化整体性能。针对分数多普勒导致的OTFS性能下降问题,提出了基于原型滤波器的OTFS通感一体化信号设计方法。通过原型滤波器调理多普勒旁瓣,在不显著损失多普勒分辨率的同时,抑制多普勒弥散效应,提升检测概率,降低误码率。针对OTFS互相关匹配滤波信道估计算法计算复杂度高等问题,进一步提出了利用恒虚警率(Constant False Alarm Rate,CFAR)检测进行信道估计的思路,在降低计算复杂度的同时,稳健检测出了同一时延、不同多普勒的多个目标,保障了信道估计和目标检测性能。依据理论分析和仿真实验可知,本文可将分数多普勒条件下的通信误码率降低2个数量级。