Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency ...Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions.展开更多
In order to study the response law of vortex-induced vibration(VIV)of marine risers under the combined action of roughness and interference effects,and to reveal the coupling mechanism of roughness and interference ef...In order to study the response law of vortex-induced vibration(VIV)of marine risers under the combined action of roughness and interference effects,and to reveal the coupling mechanism of roughness and interference effects on the riser,a VIV experiment of rough risers in tandem arrangement was conducted in a wave−current combined flume.The experiment characterized the risers’roughness by arranging different specifications of attachments on the surface of the risers.Three rough risers with different roughness and smooth risers were arranged in tandem arrangement,with the rough risers arranged downstream.The experimental results indicate that the suppression of the attachments on the downstream risers’vibration are more significant both in the CF and IL directions as the reduced velocity increases.For the downstream riser,the amplitude response of rough riser is more significantly weakened compared with the smooth one at high reduced velocity.For the upstream risers,changes in the roughness and spacing ratio have an impact on their‘lock-in’region.When the roughness of downstream risers is relatively large(0.1300)and the spacing between risers is small(S/D=4.0),the reduced velocity range of‘lock-in’region in the CF direction of upstream risers is obviously expanded,and the displacement in the‘lock-in’region is severer.展开更多
Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily ...Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily caused by surface defects.In this study,we present a novel method for modifying surfaces using the multifunctional S-ethylisothiourea hydrobromide(SEBr),which can passivate both Pb^(-1)and FA^(-1)terminated surfaces,Moreover,the SEBr upshifted the Fermi level at the perovskite interface,thereby promoting carrier collection.This proposed method was effective for both 1.67 and 1.77 eV WBG PSCs,achieving power conversion efficiencies(PCEs)of 22.47%and 19.90%,respectively,with V_(OC)values of 1.28 and 1.33 V,along with improved film and device stability.With this advancement,we were able to fabricate monolithic all-perovskite tandem solar cells with a champion PCE of 27.10%,This research offers valuable insights for passivating the surface trap states of WBG perovskite through rational multifunctional molecular engineering.展开更多
The high voltage required to overcome the thermodynamic threshold and the complicated kinetics of the water splitting reaction limit the efficiency of single semiconductor-based photoelectrochemistry.A semiconductor/s...The high voltage required to overcome the thermodynamic threshold and the complicated kinetics of the water splitting reaction limit the efficiency of single semiconductor-based photoelectrochemistry.A semiconductor/solar cell tandem structure has been theoretically demonstrated as a viable path to achieve an efficient direct transformation of sunlight into chemical energy.However,compact designs exhibiting the indispensable optimally balanced light absorption have not been demonstrated.In the current work,we design and implement a compact tandem providing the complementary absorption of a highly transparent BiVO_(4)photoanode and a PM6:Y6 solar cell.Such bandgap combination approaches the optimal to reach the solar-to-hydrogen(STH)conversion upper limit for tandem photoelectrochemical cells(PECs).We demonstrate that,by using a photonic multilayer structure to adequately balance sunlight absorption among both tandem materials,a 25%increase in the bias-free STH conversion can be achieved,setting a clear path to take compact tandem PECs to the theoretical limit performance.展开更多
In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in im...In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in implementing solution-processed perovskite top cell on the rough surface of the bottom cells.Here,we firstly demonstrate an efficient monolithic two-terminal perovskite/CZTSSe tandem solar cell by significantly reducing the surface roughness of the electrochemically deposited CZTSSe bottom cell.The surface roughness(R_(rms))of the CZTSSe thin film could be reduced from 424 to 86 nm by using the potentiostatic mode rather than using the conventional galvanostatic mode,which can be further reduced to 22 nm after the subsequent ion-milling process.The perovskite top cell with a bandgap of 1.65 eV could be prepared using a solution process on the flattened CZTSSe bottom cell,resulting in the efficient perovskite/CZTSSe tandem solar cells.After the current matching between two subcells involving the thickness control of the perovskite layer,the best performing tandem device exhibited a high conversion efficiency of 17.5%without the hysteresis effect.展开更多
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski...Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell.展开更多
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co...Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.展开更多
Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-d...Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs.展开更多
Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to ...Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs.展开更多
To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃...To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃by a single co-evaporation,which is applicable to polyimide(PI)substrate.Because of the alkali-free substrate,Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe.The bulk defect density was significantly reduced by suppression of deep acceptor states after the(NaF+KF)PDTs.Through the low-temperature deposition with(NaF+KF)PDTs,the CZTSe device on glass yields the best efficiency of 8.1%with an improved Voc deficit of 646 mV.The developed deposition technologies have been applied to PI.For the first time,we report the highest efficiency of 6.92%for flexible CZTSe solar cells on PI.Additionally,CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe(~1.0 eV)so that the tandem cell yielded an efficiency of 20%.The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications.展开更多
Cell lineages of nematodes are completely known: the adult male of Caenorhabditis elegans contains 1031 somatic cells, the hermaphrodite 959, not one more, not one less;cell divisions are strictly deterministic (as in...Cell lineages of nematodes are completely known: the adult male of Caenorhabditis elegans contains 1031 somatic cells, the hermaphrodite 959, not one more, not one less;cell divisions are strictly deterministic (as in the great majority of invertebrates) but so far nothing is known about the mechanism used by cells to count precise numbers of divisions. In vertebrates, each species has its invariable deterministic numbers of somites, vertebrae, fingers, and teeth: counting the number of iterations is a widespread process in living beings;nonetheless, it remains an unanswered question and a great challenge in cell biology. This paper introduces a computational model to investigate the possible role of satellite DNA in counting cell divisions, showing how cells may operate under Boolean logic algebra. Satellite DNA, made up of repeated monomers and subject to high epigenetic methylation rates, is very similar to iterable sequences used in programming: just like in the “iteration protocol” of algorithms, the epigenetic machinery may run over linear tandem repeats (that hold cell-fate data), read and orderly mark one monomer per cell-cycle (cytosine methylation), keep track and transmit marks to descendant cells, sending information to cell-cycle regulators.展开更多
In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy...In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy of current methods approaches this limit, further exploration of new prediction techniques may become redundant. Conversely, a need for more precise prediction methods or models may be indicated. In this study, we have experimentally analyzed the limits of accuracy at different numbers of ions and parameters using repeated spectral pairs and integrating various similarity metrics. Results show significant achievements in accuracy for backbone ion methods with room for improvement. In contrast, full-spectrum prediction methods exhibit greater potential relative to the theoretical accuracy limit. Additionally, findings highlight the significant impact of normalized collision energy and instrument type on prediction accuracy, underscoring the importance of considering these factors in future theoretical tandem mass spectrometry predictions.展开更多
基金National Natural Science Foundation of China (Grant No. 62374065)Interdisciplinary Research promotion of HUST (No. 2023JCYJ040)+2 种基金Innovation Project of Optics Valley Laboratory (No. OVL2021BG008)Program of Science Technology of Wenzhou City (No. G20210011)financial support from the Innovation and Technology Commission (Grant no. MHP/104/21)。
文摘Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions.
基金supported by the Natural Science Foundation of Shandong Province(Grant Nos.ZR2023ME040 and ZR2022QE118)the Key Technology Research and Development Program of Shandong Province(Grant No.2023CXGC010316)the Natural Science Foundation of Qingdao(Grant No.23-2-1-207-zyyd-jch),and the National Natural Science Foundation of China(Grant No.51709161).
文摘In order to study the response law of vortex-induced vibration(VIV)of marine risers under the combined action of roughness and interference effects,and to reveal the coupling mechanism of roughness and interference effects on the riser,a VIV experiment of rough risers in tandem arrangement was conducted in a wave−current combined flume.The experiment characterized the risers’roughness by arranging different specifications of attachments on the surface of the risers.Three rough risers with different roughness and smooth risers were arranged in tandem arrangement,with the rough risers arranged downstream.The experimental results indicate that the suppression of the attachments on the downstream risers’vibration are more significant both in the CF and IL directions as the reduced velocity increases.For the downstream riser,the amplitude response of rough riser is more significantly weakened compared with the smooth one at high reduced velocity.For the upstream risers,changes in the roughness and spacing ratio have an impact on their‘lock-in’region.When the roughness of downstream risers is relatively large(0.1300)and the spacing between risers is small(S/D=4.0),the reduced velocity range of‘lock-in’region in the CF direction of upstream risers is obviously expanded,and the displacement in the‘lock-in’region is severer.
基金financially supported by the National Natural Science Foundation of China(52330004)the Fundamental Research Funds for the Central Universities(WUT:2023IVA075 and 2023IVB009)+3 种基金the financial support from RISE project Grant(Q-CDBK)Start-up Fund for RAPs under the Strategic Hiring Scheme(PoluU)(1-BD1H)PRI Strategic Grant(1-CD7X)RI-iWEAR Strategic Supporting Scheme(1-CD94)。
文摘Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily caused by surface defects.In this study,we present a novel method for modifying surfaces using the multifunctional S-ethylisothiourea hydrobromide(SEBr),which can passivate both Pb^(-1)and FA^(-1)terminated surfaces,Moreover,the SEBr upshifted the Fermi level at the perovskite interface,thereby promoting carrier collection.This proposed method was effective for both 1.67 and 1.77 eV WBG PSCs,achieving power conversion efficiencies(PCEs)of 22.47%and 19.90%,respectively,with V_(OC)values of 1.28 and 1.33 V,along with improved film and device stability.With this advancement,we were able to fabricate monolithic all-perovskite tandem solar cells with a champion PCE of 27.10%,This research offers valuable insights for passivating the surface trap states of WBG perovskite through rational multifunctional molecular engineering.
基金the financial support by the European Commission through the LICROX project(grant 951843)partially funded by Ministerio de Ciencia e Innovación(grants Nos.CEX2019000910-S and PID2020-112650RB-I00)+3 种基金FundacióCellex,FundacióMir-Puig,and Generalitat de Catalunya through Centres de Recerca de Catalunyathe financial support by the Agencia Estatal de Investigación(grant PRE2018-084881)support from the Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación(grant FJC2020-043223-I)the Severo Ochoa Excel ence Post-doctoral Fellowship(grant CEX2019000910-S)
文摘The high voltage required to overcome the thermodynamic threshold and the complicated kinetics of the water splitting reaction limit the efficiency of single semiconductor-based photoelectrochemistry.A semiconductor/solar cell tandem structure has been theoretically demonstrated as a viable path to achieve an efficient direct transformation of sunlight into chemical energy.However,compact designs exhibiting the indispensable optimally balanced light absorption have not been demonstrated.In the current work,we design and implement a compact tandem providing the complementary absorption of a highly transparent BiVO_(4)photoanode and a PM6:Y6 solar cell.Such bandgap combination approaches the optimal to reach the solar-to-hydrogen(STH)conversion upper limit for tandem photoelectrochemical cells(PECs).We demonstrate that,by using a photonic multilayer structure to adequately balance sunlight absorption among both tandem materials,a 25%increase in the bias-free STH conversion can be achieved,setting a clear path to take compact tandem PECs to the theoretical limit performance.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government's Ministry of Science and ICT(NRF-2022M3J1A1063226,2021M3H4A1A 03057403,2017M3D1A1039377,and NRF-2021R1C1C1011882)supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20203040010320)
文摘In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in implementing solution-processed perovskite top cell on the rough surface of the bottom cells.Here,we firstly demonstrate an efficient monolithic two-terminal perovskite/CZTSSe tandem solar cell by significantly reducing the surface roughness of the electrochemically deposited CZTSSe bottom cell.The surface roughness(R_(rms))of the CZTSSe thin film could be reduced from 424 to 86 nm by using the potentiostatic mode rather than using the conventional galvanostatic mode,which can be further reduced to 22 nm after the subsequent ion-milling process.The perovskite top cell with a bandgap of 1.65 eV could be prepared using a solution process on the flattened CZTSSe bottom cell,resulting in the efficient perovskite/CZTSSe tandem solar cells.After the current matching between two subcells involving the thickness control of the perovskite layer,the best performing tandem device exhibited a high conversion efficiency of 17.5%without the hysteresis effect.
基金supported by the National Research Foundation of Korea (NRF)the Ministry of Science,ICT (2022M3J1A1085285,2019R1A2C1084010,and 2022R1A2C2006532)the Korea Electric Power Corporation (R20XO02-1)。
文摘Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell.
基金financially supported by the National Natural Science Foundation of China (22279083,22109166,52202183)Guangdong Basic and Applied Basic Research Foundation (Grant No.2019A1515011136,2022B1515120006,2023B1515120041,2414050001473)+3 种基金Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded SchemeGuangdong Provincial Key Laboratory Program (2021B1212040001)from the Department of Science and Technology of Guangdong ProvinceBeijing Institute of TechnologySongshan Lake Materials Laboratory。
文摘Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.
基金the talent project of ZJU-Hangzhou Global Scientific and Technological Innovation Center(No.02170000-K02013017)project of National Natural Science Foundation of China(No.61721005)
文摘Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs.
基金the financial support of National Key Research and Development Program of China(Grant No.2023YFB4202503)the Joint Funds of the National Natural Science Foundation of China(Grant No.U21A2072)+7 种基金Natural Science Foundation of China(Grant No.62274099)Natural Science Foundation of Tianjin(No.20JCQNJC02070)China Postdoctoral Science Foundation(No.2020T130317)the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China(Grant No.B16027)Tianjin Science and Technology Project(Grant No.18ZXJMTG00220)Key R&D Program of Hebei Province(No.19214301D)provided by the Haihe Laboratory of Sustainable Chemical Transformationsthe Fundamental Research Funds for the Central Universities,Nankai University.
文摘Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs.
基金financially supported by the Korea Institute of Energy Research(KIER)(grant no.C3-2401,2402,2403)the National Research Foundation(grant no.2022M3J1A1063019)funded by the Ministry of Science and ICT
文摘To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃by a single co-evaporation,which is applicable to polyimide(PI)substrate.Because of the alkali-free substrate,Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe.The bulk defect density was significantly reduced by suppression of deep acceptor states after the(NaF+KF)PDTs.Through the low-temperature deposition with(NaF+KF)PDTs,the CZTSe device on glass yields the best efficiency of 8.1%with an improved Voc deficit of 646 mV.The developed deposition technologies have been applied to PI.For the first time,we report the highest efficiency of 6.92%for flexible CZTSe solar cells on PI.Additionally,CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe(~1.0 eV)so that the tandem cell yielded an efficiency of 20%.The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications.
文摘Cell lineages of nematodes are completely known: the adult male of Caenorhabditis elegans contains 1031 somatic cells, the hermaphrodite 959, not one more, not one less;cell divisions are strictly deterministic (as in the great majority of invertebrates) but so far nothing is known about the mechanism used by cells to count precise numbers of divisions. In vertebrates, each species has its invariable deterministic numbers of somites, vertebrae, fingers, and teeth: counting the number of iterations is a widespread process in living beings;nonetheless, it remains an unanswered question and a great challenge in cell biology. This paper introduces a computational model to investigate the possible role of satellite DNA in counting cell divisions, showing how cells may operate under Boolean logic algebra. Satellite DNA, made up of repeated monomers and subject to high epigenetic methylation rates, is very similar to iterable sequences used in programming: just like in the “iteration protocol” of algorithms, the epigenetic machinery may run over linear tandem repeats (that hold cell-fate data), read and orderly mark one monomer per cell-cycle (cytosine methylation), keep track and transmit marks to descendant cells, sending information to cell-cycle regulators.
文摘In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy of current methods approaches this limit, further exploration of new prediction techniques may become redundant. Conversely, a need for more precise prediction methods or models may be indicated. In this study, we have experimentally analyzed the limits of accuracy at different numbers of ions and parameters using repeated spectral pairs and integrating various similarity metrics. Results show significant achievements in accuracy for backbone ion methods with room for improvement. In contrast, full-spectrum prediction methods exhibit greater potential relative to the theoretical accuracy limit. Additionally, findings highlight the significant impact of normalized collision energy and instrument type on prediction accuracy, underscoring the importance of considering these factors in future theoretical tandem mass spectrometry predictions.