Spodoptera frugiperda is a highly destructive pest that has become a global problem due to its robust reproductive and migratory capabilities.Transient receptor potential(TRP)channels,which constitute a vast ion chann...Spodoptera frugiperda is a highly destructive pest that has become a global problem due to its robust reproductive and migratory capabilities.Transient receptor potential(TRP)channels,which constitute a vast ion channel family,play pivotal roles in sensing the external environment and maintaining internal homeostasis in insects.TRP channels have been widely investigated for their critical roles in regulating various insect behaviors in recent years.In this study,we identified 15 TRP gene loci encoding 26 transcripts in the genome of S.frugiperda and analyzed their expression profiles at different developmental stages.The results revealed that S.frugiperda possesses four TRPC genes,six TRPA genes,one TRPM gene,two TRPV genes,one TRPN gene,and one TRPML gene,while a canonical TRPP is absent.Moreover,the SfruTRPA1 was functionally characterized using the Xenopus oocyte expression system.The results showed that SfruTRPA1 is activated by temperature increases from 20 to 45℃,and there is no significant desensitization after repeated stimuli within the same temperature range.Additionally,SfruTRPA1 is activated by certain natural chemicals,including allyl isothiocyanate(AITC)and cinnamaldehyde(CA).These findings provide valuable insights to the TRP genes in S.frugiperda.展开更多
Potassium transporters play crucial roles in K^+ uptake and translocation in plants. However, so far little is known about the regulatory mechanism of potassium transporters. Here, we show that a Shaker-like potassiu...Potassium transporters play crucial roles in K^+ uptake and translocation in plants. However, so far little is known about the regulatory mechanism of potassium transporters. Here, we show that a Shaker-like potassium channel AtKC1, encoded by the AtLKT1 gene cloned from the Arabidopsis thaliana low-K^+ (LK)-tolerant mutant Atlktl, significantly regulates AKTl-mediated K^+ uptake under LK conditions. Under LK conditions, the Atkcl mutants maintained their root growth, whereas wild-type plants stopped their root growth. Lesion of AtKC1 significantly enhanced the tolerance of the Atkcl mutants to LK stress and markedly increased K^+ uptake and K^+ accumulation in the Atkclmutant roots under LK conditions. Electrophysiological results showed that AtKC1 inhibited the AKT1-mediated inward K^+ currents and negatively shifted the voltage dependence of AKT1 channels. These results demonstrate that the ‘silent' K^+ channel α-subunit AtKC1 negatively regulates the AKTl-mediated K^+ uptake in Arabidopsis roots and consequently alters the ratio of root-to-shoot under LK stress conditions.展开更多
AIM: To investigate the mechanisms of chloride intracellular channel 1 (CLIC1) in the metastasis of colon cancer under hypoxia-reoxygenation (H-R) conditions.
AIM:To investigate the effect of chloride intracellular channel 1(CLIC1) on the cell proliferation,apoptosis,migration and invasion of gastric cancer cells.METHODS:CLIC1 expression was evaluated in human gastric cance...AIM:To investigate the effect of chloride intracellular channel 1(CLIC1) on the cell proliferation,apoptosis,migration and invasion of gastric cancer cells.METHODS:CLIC1 expression was evaluated in human gastric cancer cell lines SGC-7901 and MGC-803 by real time polymerase chain reaction(RT-PCR).Four segments of small interference RNA(siRNA) targeting CLIC1 mRNA and a no-sense control segment were designed by bioinformatics technology.CLIC1 siRNA was selected using Lipofectamine 2000 and transfected transiently into human gastric cancer SGC-7901 and MGC-803 cells.The transfected efficiency was observed under fluorescence microscope.After transfection,mRNA expression of CLIC1 was detected with RT-PCR and Western blotting was used to detect the protein expression.Proliferation was examined by methyl thiazolyl tetrazolium and apoptosis was detected with flow cytometry.Polycarbonate membrane transwell chamber and Matrigel were used for the detection of the changes of invasion and migration of the two cell lines.RESULTS:In gastric cancer cell lines SGC-7901 and MGC-803,CLIC1 was obviously expressed and CLIC1 siRNA could effectively suppress the expression of CLIC1 protein and mRNA.Proliferation of cells transfected with CLIC1 siRNA3 was enhanced notably,and the highest proliferation rate was 23.3%(P = 0.002) in SGC-7901 and 35.55%(P = 0.001) in MGC-803 cells at 48 h.The G2/M phase proportion increased,while G0/G1 and S phase proportions decreased.The apoptotic rate of the CLIC1 siRNA3 group obviously decreased in both SGC-7901 cells(62.24%,P = 0.000) and MGC-803 cells(52.67%,P = 0.004).Down-regulation of CLIC1 led to the inhibition of invasion and migration by 54.31%(P = 0.000) and 33.62%(P = 0.001) in SGC-7901 and 40.74%(P = 0.000) and 29.26%(P = 0.002) in MGC-803.However,there was no significant difference between the mock group cells and the negative control group cells.展开更多
After spinal cord injury,microglia as the first responders to the lesion display both beneficial and detrimental characteristics.Activated microglia phagocyte and eliminate cell debris,release cytokines to recruit per...After spinal cord injury,microglia as the first responders to the lesion display both beneficial and detrimental characteristics.Activated microglia phagocyte and eliminate cell debris,release cytokines to recruit peripheral immune cells to the injury site.Excessively activated microglia can aggravate the secondary damage by producing extravagant reactive oxygen species and pro-inflammatory cytokines.Recent studies demonstrated that the voltage-gated proton channel Hv1 is selectively expressed in microglia and regulates microglial activation upon injury.In mouse models of spinal cord injury,Hv1 deficiency ameliorates microglia activation,resulting in alleviated production of reactive oxygen species and pro-inflammatory cytokines.The reduced secondary damage subsequently decreases neuronal loss and correlates with improved locomotor recovery.This review provides a brief historical perspective of advances in investigating voltage-gated proton channel Hv1 and home in on microglial Hv1.We discuss recent studies on the roles of Hv1 activation in pathophysiological activities of microglia,such as production of NOX-dependent reactive oxygen species,microglia polarization,and tissue acidosis,particularly in the context of spinal cord injury.Further,we highlight the rationale for targeting Hv1 for the treatment of spinal cord injury and related disorders.展开更多
With a low resolution 1-bit ADC on its receiver(RX) side, MIMO with 1-bit ADC took a considerable step in the fulfillment of the hardware complexity constrains of the internet of things(IoT) PHY layer design. However,...With a low resolution 1-bit ADC on its receiver(RX) side, MIMO with 1-bit ADC took a considerable step in the fulfillment of the hardware complexity constrains of the internet of things(IoT) PHY layer design. However, applying 1-bit ADC at MIMO RX results in severe nonlinear quantization error. By which, almost all received signal amplitude information is completely distorted. Thus, MIMO channel estimation is considered as a major barrier towards practical realization of 1-bit ADC MIMO system. In this paper, two efficient sparsity-based channel estimation techniques are proposed for 1-bit ADC MIMO systems, namely the low complexity sparsity-based channel estimation(LCSCE), and the iterative adaptive sparsity channel estimation(IASCE). In these techniques, the sparsity of the 1-bit ADC MIMO channel is exploited to propose a new adaptive and iterative compressive sensing(CS) recovery algorithm to handle the 1-bit ADC quantization effect. The proposed algorithms are tested with the state-of-the-art 1-bit ADC MIMO constant envelope modulation(MIMO-CEM). The 1-bit ADC MIMO-CEM system is chosen as it fulfills both energy and hardware complexity constraints of the IoT PHY layer. Simulation results reveal the high effectiveness of the proposed algorithms in terms of spectral efficiency(SE) and computational complexity. The proposed LCSCE reduces the computational complexity of the 1-bit ADC MIMO-CEM channel estimation by 86%, while the IASCE reduces it by 96% compared to the recent techniques of MIMO-CEM channel estimation. Moreover, the proposed LCSCE and IASCE improve the spectrum efficiency by 76 % and 73 %, respectively, compared to the recent techniques.展开更多
TO THE EDITOR Sir, I read with great interest the recently published article in the World Journal of Gastroenterology by Jin and co-workers on the cloning and characterization of porcine aquaporin 1 water channel from...TO THE EDITOR Sir, I read with great interest the recently published article in the World Journal of Gastroenterology by Jin and co-workers on the cloning and characterization of porcine aquaporin 1 water channel from the pig liver and studies on its expression in the porcine gastrointestinal system. The authors should be congratulated for making this important and valuable contribution to the field of aquaporin biology and porcine gastrointestinal physiology. However, there are a number of unresolved issues and controversies concerning the expression of aquaporins (especially aquaporin 1) in the gastrointestinal system that are worthy of additional comment and discussion by Jin and co-workers.展开更多
基金funded by the Shenzhen Science and Technology Program,China(KQTD20180411143628272)the Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District,China(pt202101-02)the National Key R&D Program of China(2022YFE0116500).
文摘Spodoptera frugiperda is a highly destructive pest that has become a global problem due to its robust reproductive and migratory capabilities.Transient receptor potential(TRP)channels,which constitute a vast ion channel family,play pivotal roles in sensing the external environment and maintaining internal homeostasis in insects.TRP channels have been widely investigated for their critical roles in regulating various insect behaviors in recent years.In this study,we identified 15 TRP gene loci encoding 26 transcripts in the genome of S.frugiperda and analyzed their expression profiles at different developmental stages.The results revealed that S.frugiperda possesses four TRPC genes,six TRPA genes,one TRPM gene,two TRPV genes,one TRPN gene,and one TRPML gene,while a canonical TRPP is absent.Moreover,the SfruTRPA1 was functionally characterized using the Xenopus oocyte expression system.The results showed that SfruTRPA1 is activated by temperature increases from 20 to 45℃,and there is no significant desensitization after repeated stimuli within the same temperature range.Additionally,SfruTRPA1 is activated by certain natural chemicals,including allyl isothiocyanate(AITC)and cinnamaldehyde(CA).These findings provide valuable insights to the TRP genes in S.frugiperda.
基金Acknowledgments We thank Dr Emily Liman (University of Southern California, USA) for providing the pGEMHE vector for the Xenopus oocyte experiments. We also thank Dr Richer Gaber (Northwestern Uni- versity, USA) for providing the yeast mutant strain with K+ transport deficiency. We are grateful to Dr Rainer Hedrich (University of Wurzburg, Germany) for critical discussion. This work was supported by the National Natural Science Foundation of China (grant no. 30830013 to WHW), the Beijing Municipal Education Commission (grant no. YB20081001901 to WHW) and the Program of Introducing Talents of Discipline to Universities (grant no. B06003 to WHW).
文摘Potassium transporters play crucial roles in K^+ uptake and translocation in plants. However, so far little is known about the regulatory mechanism of potassium transporters. Here, we show that a Shaker-like potassium channel AtKC1, encoded by the AtLKT1 gene cloned from the Arabidopsis thaliana low-K^+ (LK)-tolerant mutant Atlktl, significantly regulates AKTl-mediated K^+ uptake under LK conditions. Under LK conditions, the Atkcl mutants maintained their root growth, whereas wild-type plants stopped their root growth. Lesion of AtKC1 significantly enhanced the tolerance of the Atkcl mutants to LK stress and markedly increased K^+ uptake and K^+ accumulation in the Atkclmutant roots under LK conditions. Electrophysiological results showed that AtKC1 inhibited the AKT1-mediated inward K^+ currents and negatively shifted the voltage dependence of AKT1 channels. These results demonstrate that the ‘silent' K^+ channel α-subunit AtKC1 negatively regulates the AKTl-mediated K^+ uptake in Arabidopsis roots and consequently alters the ratio of root-to-shoot under LK stress conditions.
基金Supported by The "Eleventh Five-year Plan" for Medical Sci-ence Development of PLA,No.06MB243the National Natural Science Foundation of China,No.81101101 and No.51273165+1 种基金the Key Project of Chinese Ministry of Education,No.212149the Projects of Sichuan Province,No.2010SZ0294,No.2011JQ0032 and No.12ZB038
文摘AIM: To investigate the mechanisms of chloride intracellular channel 1 (CLIC1) in the metastasis of colon cancer under hypoxia-reoxygenation (H-R) conditions.
基金Supported by The National Natural Science Foundation of China,No.30560151the Key Research Project of Guangxi Municipal Health Bureau,No.200824+1 种基金the Research Project of Guangxi Educational Department,No.201012MS062 and No. 2011105981002M204the Natural Science Foundation of Guangxi,No.0832113
文摘AIM:To investigate the effect of chloride intracellular channel 1(CLIC1) on the cell proliferation,apoptosis,migration and invasion of gastric cancer cells.METHODS:CLIC1 expression was evaluated in human gastric cancer cell lines SGC-7901 and MGC-803 by real time polymerase chain reaction(RT-PCR).Four segments of small interference RNA(siRNA) targeting CLIC1 mRNA and a no-sense control segment were designed by bioinformatics technology.CLIC1 siRNA was selected using Lipofectamine 2000 and transfected transiently into human gastric cancer SGC-7901 and MGC-803 cells.The transfected efficiency was observed under fluorescence microscope.After transfection,mRNA expression of CLIC1 was detected with RT-PCR and Western blotting was used to detect the protein expression.Proliferation was examined by methyl thiazolyl tetrazolium and apoptosis was detected with flow cytometry.Polycarbonate membrane transwell chamber and Matrigel were used for the detection of the changes of invasion and migration of the two cell lines.RESULTS:In gastric cancer cell lines SGC-7901 and MGC-803,CLIC1 was obviously expressed and CLIC1 siRNA could effectively suppress the expression of CLIC1 protein and mRNA.Proliferation of cells transfected with CLIC1 siRNA3 was enhanced notably,and the highest proliferation rate was 23.3%(P = 0.002) in SGC-7901 and 35.55%(P = 0.001) in MGC-803 cells at 48 h.The G2/M phase proportion increased,while G0/G1 and S phase proportions decreased.The apoptotic rate of the CLIC1 siRNA3 group obviously decreased in both SGC-7901 cells(62.24%,P = 0.000) and MGC-803 cells(52.67%,P = 0.004).Down-regulation of CLIC1 led to the inhibition of invasion and migration by 54.31%(P = 0.000) and 33.62%(P = 0.001) in SGC-7901 and 40.74%(P = 0.000) and 29.26%(P = 0.002) in MGC-803.However,there was no significant difference between the mock group cells and the negative control group cells.
基金the National Institutes of Health(Nos.R01NS110949,R01NS088627,R01NS112144,R01NS110825,R21AG064159)to LJW.
文摘After spinal cord injury,microglia as the first responders to the lesion display both beneficial and detrimental characteristics.Activated microglia phagocyte and eliminate cell debris,release cytokines to recruit peripheral immune cells to the injury site.Excessively activated microglia can aggravate the secondary damage by producing extravagant reactive oxygen species and pro-inflammatory cytokines.Recent studies demonstrated that the voltage-gated proton channel Hv1 is selectively expressed in microglia and regulates microglial activation upon injury.In mouse models of spinal cord injury,Hv1 deficiency ameliorates microglia activation,resulting in alleviated production of reactive oxygen species and pro-inflammatory cytokines.The reduced secondary damage subsequently decreases neuronal loss and correlates with improved locomotor recovery.This review provides a brief historical perspective of advances in investigating voltage-gated proton channel Hv1 and home in on microglial Hv1.We discuss recent studies on the roles of Hv1 activation in pathophysiological activities of microglia,such as production of NOX-dependent reactive oxygen species,microglia polarization,and tissue acidosis,particularly in the context of spinal cord injury.Further,we highlight the rationale for targeting Hv1 for the treatment of spinal cord injury and related disorders.
文摘With a low resolution 1-bit ADC on its receiver(RX) side, MIMO with 1-bit ADC took a considerable step in the fulfillment of the hardware complexity constrains of the internet of things(IoT) PHY layer design. However, applying 1-bit ADC at MIMO RX results in severe nonlinear quantization error. By which, almost all received signal amplitude information is completely distorted. Thus, MIMO channel estimation is considered as a major barrier towards practical realization of 1-bit ADC MIMO system. In this paper, two efficient sparsity-based channel estimation techniques are proposed for 1-bit ADC MIMO systems, namely the low complexity sparsity-based channel estimation(LCSCE), and the iterative adaptive sparsity channel estimation(IASCE). In these techniques, the sparsity of the 1-bit ADC MIMO channel is exploited to propose a new adaptive and iterative compressive sensing(CS) recovery algorithm to handle the 1-bit ADC quantization effect. The proposed algorithms are tested with the state-of-the-art 1-bit ADC MIMO constant envelope modulation(MIMO-CEM). The 1-bit ADC MIMO-CEM system is chosen as it fulfills both energy and hardware complexity constraints of the IoT PHY layer. Simulation results reveal the high effectiveness of the proposed algorithms in terms of spectral efficiency(SE) and computational complexity. The proposed LCSCE reduces the computational complexity of the 1-bit ADC MIMO-CEM channel estimation by 86%, while the IASCE reduces it by 96% compared to the recent techniques of MIMO-CEM channel estimation. Moreover, the proposed LCSCE and IASCE improve the spectrum efficiency by 76 % and 73 %, respectively, compared to the recent techniques.
文摘TO THE EDITOR Sir, I read with great interest the recently published article in the World Journal of Gastroenterology by Jin and co-workers on the cloning and characterization of porcine aquaporin 1 water channel from the pig liver and studies on its expression in the porcine gastrointestinal system. The authors should be congratulated for making this important and valuable contribution to the field of aquaporin biology and porcine gastrointestinal physiology. However, there are a number of unresolved issues and controversies concerning the expression of aquaporins (especially aquaporin 1) in the gastrointestinal system that are worthy of additional comment and discussion by Jin and co-workers.