Plasma-catalysis is considered as one of the most promising technologies for antibiotic degradation in water.In the plasma-catalytic system,one of the factors affecting the degradation effect is the performance of the...Plasma-catalysis is considered as one of the most promising technologies for antibiotic degradation in water.In the plasma-catalytic system,one of the factors affecting the degradation effect is the performance of the photocatalyst,which is usually restricted by the rapid recombination of electrons and holes as well as narrow light absorption range.In this research,a photocatalyst g-C_(3)N_(4)/TiO_(2) was prepared and coupled with gas-liquid discharge(GLD)to degrade tetracycline(TC).The performance was examined,and the degradation pathways and mechanisms were studied.Results show that a 90%degradation rate is achieved in the GLD with g-C_(3)N_(4)/TiO_(2) over a 10 min treatment.Increasing the pulse voltage is conducive to increasing the degradation rate,whereas the addition of excessive g-C_(3)N_(4)/TiO_(2) tends to precipitate agglomerates,resulting in a poor degradation efficiency.The redox properties of the g-C_(3)N_(4)/TiO_(2) surface promote the generation of oxidizing active species(H2O2,O3)in solution.Radical quenching experiments showed that·OH,hole(h^(+)),play important roles in the TC degradation by the discharge with g-C_(3)N_(4)/TiO_(2).Two potential degradation pathways were proposed based on the intermediates.The toxicity of tetracycline was reduced by treatment in the system.Furthermore,the g-C_(3)N_(4)/TiO_(2) composites exhibited excellent recoverability and stability.展开更多
Co_(3)O_(4)particles are promising heterogeneous catalysts for peroxymonosulfate(PMS)activation;whereas they still surfer from the extensive agglomeration,serious Co leaching,poor electronic conductivity,and difficult...Co_(3)O_(4)particles are promising heterogeneous catalysts for peroxymonosulfate(PMS)activation;whereas they still surfer from the extensive agglomeration,serious Co leaching,poor electronic conductivity,and difficult recovery.Herein,a novel hybrid nanoarchitectonic constructed by encapsulating Co_(3)O_(4)nanoparticles into continuous polypyrrole(PPy)nanotubes(Co_(3)O_(4)@PPy hybrids)was developed using electrospun fibers as the templates,which boosted the catalytic degradation toward tetracycline(TC).The continuous polypyrrole nanotubes could provide the confined spaces,offer effective electron transfer pathway,suppress cobalt ion loss,facilitate the oxygen vacancy(Ovac)formation,and accelerate the Co^(2+)/Co^(3+)cycles.Co_(3)O_(4)@PPy hybrids thereby exhibited a remarkably enhanced catalytic activity with the TC degradation efficiency of 97.2%(kobs=0.244 min^(−1))within 20 min and total organic carbon(TOC)removal rate of 66.8%.Furthermore,the recycle test,real natural water treatment,and fluidized-column catalytic experiments indicated the potential of Co_(3)O_(4)@PPy hybrids in the practical large-scale applications.展开更多
Rational design and synthesis of highly efficient and robust photocatalysts with positive exciton splitting and interfacial charge transfer for environmental applications is critical.Herein,aiming at overcoming the co...Rational design and synthesis of highly efficient and robust photocatalysts with positive exciton splitting and interfacial charge transfer for environmental applications is critical.Herein,aiming at overcoming the common shortcomings of traditional photocatalysts such as weak photoresponsivity,rapid combination of photo-generated carriers and unstable structure,a novel Ag-bridged dual Z-scheme g-C_(3)N_(4)/BiOI/AgI plasmonic heterojunction was successfully synthesized using a facile method.Results showed that Ag-AgI nanoparticles and three-dimensional(3D)BiOI microspheres were decorated highly uniformly on the 3D porous g-C_(3)N_(4) nanosheet,resulting in a higher specific surface area and abundant active sites.The optimized 3D porous dual Z-scheme g-C_(3)N_(4)/BiOI/Ag-AgI manifested exceptional photocatalytic degradation efficiency of tetracycline(TC)in water with approximately 91.8%degradation efficiency within 165 min,outperforming majority of the reported g-C_(3)N_(4)-based photocatalysts.Moreover,g-C_(3)N_(4)/BiOI/Ag-AgI exhibited good stability in terms of activity and structure.In-depth radical scavenging and electron paramagnetic resonance(EPR)analyses confirmed the relative contributions of various scavengers.Mechanism analysis indicated that the improved photocatalytic performance and stability were ascribed to the highly ordered 3D porous framework,fast electron transfer of dual Z-scheme heterojunction,desirable photocatalytic performance of BiOI/AgI and synergistic effect of Ag plasmas.Therefore,the 3D porous Z-scheme g-C_(3)N_(4)/BiOI/Ag-AgI heterojunction had a good prospect for applications in water remediation.The current work provides new insight and useful guidance for designing novel structural photocatalysts for environment-related applications.展开更多
基金supported by National Natural Science Foundation of China(Nos.52277151 and 51907088)Innovative Talents Team Project of‘Six Talent Peaks’of Jiangsu Province(No.TD-JNHB-006).
文摘Plasma-catalysis is considered as one of the most promising technologies for antibiotic degradation in water.In the plasma-catalytic system,one of the factors affecting the degradation effect is the performance of the photocatalyst,which is usually restricted by the rapid recombination of electrons and holes as well as narrow light absorption range.In this research,a photocatalyst g-C_(3)N_(4)/TiO_(2) was prepared and coupled with gas-liquid discharge(GLD)to degrade tetracycline(TC).The performance was examined,and the degradation pathways and mechanisms were studied.Results show that a 90%degradation rate is achieved in the GLD with g-C_(3)N_(4)/TiO_(2) over a 10 min treatment.Increasing the pulse voltage is conducive to increasing the degradation rate,whereas the addition of excessive g-C_(3)N_(4)/TiO_(2) tends to precipitate agglomerates,resulting in a poor degradation efficiency.The redox properties of the g-C_(3)N_(4)/TiO_(2) surface promote the generation of oxidizing active species(H2O2,O3)in solution.Radical quenching experiments showed that·OH,hole(h^(+)),play important roles in the TC degradation by the discharge with g-C_(3)N_(4)/TiO_(2).Two potential degradation pathways were proposed based on the intermediates.The toxicity of tetracycline was reduced by treatment in the system.Furthermore,the g-C_(3)N_(4)/TiO_(2) composites exhibited excellent recoverability and stability.
基金This work was financially supported by the National Key R&D Program of China(No.2022YFB3805900)National Natural Science Foundation of China(Nos.52003040,22131004,and 52273055)+1 种基金Natural Science Foundation of Department of Science and Technology of Jilin Province(Nos.YDZJ202101ZYTS060 and 20210201012GX)the“111”project(No.B18012).
文摘Co_(3)O_(4)particles are promising heterogeneous catalysts for peroxymonosulfate(PMS)activation;whereas they still surfer from the extensive agglomeration,serious Co leaching,poor electronic conductivity,and difficult recovery.Herein,a novel hybrid nanoarchitectonic constructed by encapsulating Co_(3)O_(4)nanoparticles into continuous polypyrrole(PPy)nanotubes(Co_(3)O_(4)@PPy hybrids)was developed using electrospun fibers as the templates,which boosted the catalytic degradation toward tetracycline(TC).The continuous polypyrrole nanotubes could provide the confined spaces,offer effective electron transfer pathway,suppress cobalt ion loss,facilitate the oxygen vacancy(Ovac)formation,and accelerate the Co^(2+)/Co^(3+)cycles.Co_(3)O_(4)@PPy hybrids thereby exhibited a remarkably enhanced catalytic activity with the TC degradation efficiency of 97.2%(kobs=0.244 min^(−1))within 20 min and total organic carbon(TOC)removal rate of 66.8%.Furthermore,the recycle test,real natural water treatment,and fluidized-column catalytic experiments indicated the potential of Co_(3)O_(4)@PPy hybrids in the practical large-scale applications.
基金supported by the National Natural Science Foundation of China(Nos.22106020 and 42122056)the KeyArea Research and Development Program of Guangdong Province(No.2020B1111350002)+1 种基金the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01Z032)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110718).
文摘Rational design and synthesis of highly efficient and robust photocatalysts with positive exciton splitting and interfacial charge transfer for environmental applications is critical.Herein,aiming at overcoming the common shortcomings of traditional photocatalysts such as weak photoresponsivity,rapid combination of photo-generated carriers and unstable structure,a novel Ag-bridged dual Z-scheme g-C_(3)N_(4)/BiOI/AgI plasmonic heterojunction was successfully synthesized using a facile method.Results showed that Ag-AgI nanoparticles and three-dimensional(3D)BiOI microspheres were decorated highly uniformly on the 3D porous g-C_(3)N_(4) nanosheet,resulting in a higher specific surface area and abundant active sites.The optimized 3D porous dual Z-scheme g-C_(3)N_(4)/BiOI/Ag-AgI manifested exceptional photocatalytic degradation efficiency of tetracycline(TC)in water with approximately 91.8%degradation efficiency within 165 min,outperforming majority of the reported g-C_(3)N_(4)-based photocatalysts.Moreover,g-C_(3)N_(4)/BiOI/Ag-AgI exhibited good stability in terms of activity and structure.In-depth radical scavenging and electron paramagnetic resonance(EPR)analyses confirmed the relative contributions of various scavengers.Mechanism analysis indicated that the improved photocatalytic performance and stability were ascribed to the highly ordered 3D porous framework,fast electron transfer of dual Z-scheme heterojunction,desirable photocatalytic performance of BiOI/AgI and synergistic effect of Ag plasmas.Therefore,the 3D porous Z-scheme g-C_(3)N_(4)/BiOI/Ag-AgI heterojunction had a good prospect for applications in water remediation.The current work provides new insight and useful guidance for designing novel structural photocatalysts for environment-related applications.