The α + β ? β phase transformation kinetics of TC21 Ti-alloy during continuous heating and cooling were studied using a dilatometric technique. Dilatometric heating curve exhibited that two characteristic reflectio...The α + β ? β phase transformation kinetics of TC21 Ti-alloy during continuous heating and cooling were studied using a dilatometric technique. Dilatometric heating curve exhibited that two characteristic reflection points can be observed with increasing the heating temperature. Ts referred to the initial transformation temperature of α + β → β and Tf referred to the final transformation temperature of α + β → β. Ts was reported at 720°C, whereas the corresponding Tf was obtained at 950°C. The initial and final transforming temperatures by the first derivative curve were reported at 730°C and 955°C, respectively, which are close to the values obtained in the dilatometric heating curve. Dilatometric cooling curve showed that the starting temperature of β → β + α phase transformation was 880°C;however, the corresponding finishing temperature was 670°C. The starting and finishing temperatures using the first derivative curve were obtained at 665°C and 885°C, respectively. The first derivative for the studied dilatometric heating and cooling curves showed that the starting and finishing temperatures of α + β ? β phase transformation were more accurate and objective. Results show the α + β → β transformation heating curve exhibits a typical S-shaped pattern.展开更多
TC21 is considered a new titanium alloy that is used in aircraft applications as a replacement for the famous Ti-6Al-4V alloy due to its high strength. The effect of single and duplex stage heat treatments on fatigue ...TC21 is considered a new titanium alloy that is used in aircraft applications as a replacement for the famous Ti-6Al-4V alloy due to its high strength. The effect of single and duplex stage heat treatments on fatigue behavior of TC21 Ti-alloy (Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-0.09Si, wt.%) was investigated. Two heat treatment cycles were applied on as-received TC21 Ti-alloy. The first cycle was called single stage heat treatment (SSHT). The other cycle was named duplex stage heat treatment (DSHT). Typical microstructures of SSHT & DSHT composed of primary equiaxed α phase, residual β phase and secondary α phase (αs). Secondary α phase was precipitated in the residual β phase due to low cooling rate using air cooling and aging treatment. Morphology of α phase does not change after solution treatments, while their volume fraction and grain size were changed. SSHT showed the highest fatigue strength of 868 MPa due to high tensile strength, hardness and existing of high percentages of residual β phase in the microstructure. However, DSHT reported lower fatigue strength of 743 MPa due to increasing grain size of α phase. The fracture surface of fatigue samples showed cleavage ductile fracture mode for both heat treatment cycles.展开更多
文摘The α + β ? β phase transformation kinetics of TC21 Ti-alloy during continuous heating and cooling were studied using a dilatometric technique. Dilatometric heating curve exhibited that two characteristic reflection points can be observed with increasing the heating temperature. Ts referred to the initial transformation temperature of α + β → β and Tf referred to the final transformation temperature of α + β → β. Ts was reported at 720°C, whereas the corresponding Tf was obtained at 950°C. The initial and final transforming temperatures by the first derivative curve were reported at 730°C and 955°C, respectively, which are close to the values obtained in the dilatometric heating curve. Dilatometric cooling curve showed that the starting temperature of β → β + α phase transformation was 880°C;however, the corresponding finishing temperature was 670°C. The starting and finishing temperatures using the first derivative curve were obtained at 665°C and 885°C, respectively. The first derivative for the studied dilatometric heating and cooling curves showed that the starting and finishing temperatures of α + β ? β phase transformation were more accurate and objective. Results show the α + β → β transformation heating curve exhibits a typical S-shaped pattern.
文摘TC21 is considered a new titanium alloy that is used in aircraft applications as a replacement for the famous Ti-6Al-4V alloy due to its high strength. The effect of single and duplex stage heat treatments on fatigue behavior of TC21 Ti-alloy (Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-0.09Si, wt.%) was investigated. Two heat treatment cycles were applied on as-received TC21 Ti-alloy. The first cycle was called single stage heat treatment (SSHT). The other cycle was named duplex stage heat treatment (DSHT). Typical microstructures of SSHT & DSHT composed of primary equiaxed α phase, residual β phase and secondary α phase (αs). Secondary α phase was precipitated in the residual β phase due to low cooling rate using air cooling and aging treatment. Morphology of α phase does not change after solution treatments, while their volume fraction and grain size were changed. SSHT showed the highest fatigue strength of 868 MPa due to high tensile strength, hardness and existing of high percentages of residual β phase in the microstructure. However, DSHT reported lower fatigue strength of 743 MPa due to increasing grain size of α phase. The fracture surface of fatigue samples showed cleavage ductile fracture mode for both heat treatment cycles.