The hot deformation behavior of Ti-6Al-4V (TC4) titanium alloy was investigated in the temperature range from 650℃ to 950℃ with the strain rate ranging from 7.7×10^-4 s^-1 to 7.7×10^-2 s^-1. The hot tens...The hot deformation behavior of Ti-6Al-4V (TC4) titanium alloy was investigated in the temperature range from 650℃ to 950℃ with the strain rate ranging from 7.7×10^-4 s^-1 to 7.7×10^-2 s^-1. The hot tension test results indicate that the flow stress decreases with increasing the deformation temperature and increases with increasing the strain rate. XRD analysis result reveals that only deformation temperature affects the phase constitution. The microstructure evolution under different deformation conditions was characterized by TEM observation. For the deformation of TC4 alloy, the work-hardening is dominant at low temperature, while the dynamic recovery and dynamic re-crystallization assisted softening is dominant at high temperature.展开更多
In order to analyze the effect of grain size on stress relaxation(SR) mechanism,the SR tests of TC4 alloy with three kinds of grain size were performed in a temperature range of 650-750℃.A modified cubic delay functi...In order to analyze the effect of grain size on stress relaxation(SR) mechanism,the SR tests of TC4 alloy with three kinds of grain size were performed in a temperature range of 650-750℃.A modified cubic delay function was used to establish SR model for each grain size.A simplified algorithm was proposed for calculating the deformation activation energy based on classical Arrhenius equation.The grain size distribution and variation were observed by microstructural methods.The experimental results indicate that smaller grains are earlier to reach the relaxation limit at the same temperature due to lower initial stress and faster relaxation rate.The SR limit at 650℃ reduces with decreasing grain size.While the effect of grain size on SR limit is not evident at 700 and 750℃ since the relaxation is fully completed.With the increase of grain size,the deformation activation energy is improved and SR mechanism at 700℃ changes from grain rotation and grain boundary sliding to dislocation movement and dynamic recovery.展开更多
An annealed TC4 titanium alloy sheet was treated by high density electropulsing(Jmax=(5.09-5.26)×103A/mm2,tp=110μs)under ambient conditions.The effect of electropulsing treatment(EPT)on the plastic deformation b...An annealed TC4 titanium alloy sheet was treated by high density electropulsing(Jmax=(5.09-5.26)×103A/mm2,tp=110μs)under ambient conditions.The effect of electropulsing treatment(EPT)on the plastic deformation behavior of TC4 titanium alloysheet was studied using uniaxial tension tests.The experimental results indicate that electropulsing treatment significantly changesthe mechanical properties of sheet metal:the uniform elongation is increased by 35%,the yield stress is decreased by 19.8%and theyield to tensile ratio is decreased by 17.6%.It is of significant meaning to improve the formability of TC4 titanium alloy sheet.Theoptical microscope and scanning electron microscope(SEM)were used to examine the changes of the microstructure and the fracturemorphology before and after the electropulsing treatment.It is found that recrystallization occurs in the sheet metal and dimples infracture surface are large and deep after the electropulsing treatment.The research results show that the electropulsing treatment is aneffective method to improve the formability of titanium alloy sheets.展开更多
TC4 titanium alloy was welded by double-sided gas tungsten arc welding(GTAW) process in comparison with conventional GTAW process, the microstructure and mechanical performance of weld were also studied. The results i...TC4 titanium alloy was welded by double-sided gas tungsten arc welding(GTAW) process in comparison with conventional GTAW process, the microstructure and mechanical performance of weld were also studied. The results indicate that double-sided GTAW is superior over regular single-sided GTAW on the aspects of increasing penetration, reducing welding deformation and improving welding efficiency. Good weld joint was obtained, which can reach 96.14% tensile strength and 70.85% elongation percentage of the base metal. The grains in heat-affected zone(HAZ) are thin and equiaxed and the degree of grain coarsening increases as one moves to the weld center line, and the interior of grains are α and α′ structures. The coarse columned and equiaxed grains, which interlace martensitic structures α′ and acicular α structures, are observed in weld zone. The fracture mode is ductile fracture.展开更多
文摘The hot deformation behavior of Ti-6Al-4V (TC4) titanium alloy was investigated in the temperature range from 650℃ to 950℃ with the strain rate ranging from 7.7×10^-4 s^-1 to 7.7×10^-2 s^-1. The hot tension test results indicate that the flow stress decreases with increasing the deformation temperature and increases with increasing the strain rate. XRD analysis result reveals that only deformation temperature affects the phase constitution. The microstructure evolution under different deformation conditions was characterized by TEM observation. For the deformation of TC4 alloy, the work-hardening is dominant at low temperature, while the dynamic recovery and dynamic re-crystallization assisted softening is dominant at high temperature.
基金Projects(2016ZE57008,20163657004)supported by Aeronautical Science Foundation of ChinaProject(USCAST2016-20)supported by the SAST-SJTU Joint Research Centre of Advanced Aerospace Technology,ChinaProject(51875350)supported by the National Natural Science Foundation of China
文摘In order to analyze the effect of grain size on stress relaxation(SR) mechanism,the SR tests of TC4 alloy with three kinds of grain size were performed in a temperature range of 650-750℃.A modified cubic delay function was used to establish SR model for each grain size.A simplified algorithm was proposed for calculating the deformation activation energy based on classical Arrhenius equation.The grain size distribution and variation were observed by microstructural methods.The experimental results indicate that smaller grains are earlier to reach the relaxation limit at the same temperature due to lower initial stress and faster relaxation rate.The SR limit at 650℃ reduces with decreasing grain size.While the effect of grain size on SR limit is not evident at 700 and 750℃ since the relaxation is fully completed.With the increase of grain size,the deformation activation energy is improved and SR mechanism at 700℃ changes from grain rotation and grain boundary sliding to dislocation movement and dynamic recovery.
文摘An annealed TC4 titanium alloy sheet was treated by high density electropulsing(Jmax=(5.09-5.26)×103A/mm2,tp=110μs)under ambient conditions.The effect of electropulsing treatment(EPT)on the plastic deformation behavior of TC4 titanium alloysheet was studied using uniaxial tension tests.The experimental results indicate that electropulsing treatment significantly changesthe mechanical properties of sheet metal:the uniform elongation is increased by 35%,the yield stress is decreased by 19.8%and theyield to tensile ratio is decreased by 17.6%.It is of significant meaning to improve the formability of TC4 titanium alloy sheet.Theoptical microscope and scanning electron microscope(SEM)were used to examine the changes of the microstructure and the fracturemorphology before and after the electropulsing treatment.It is found that recrystallization occurs in the sheet metal and dimples infracture surface are large and deep after the electropulsing treatment.The research results show that the electropulsing treatment is aneffective method to improve the formability of titanium alloy sheets.
文摘TC4 titanium alloy was welded by double-sided gas tungsten arc welding(GTAW) process in comparison with conventional GTAW process, the microstructure and mechanical performance of weld were also studied. The results indicate that double-sided GTAW is superior over regular single-sided GTAW on the aspects of increasing penetration, reducing welding deformation and improving welding efficiency. Good weld joint was obtained, which can reach 96.14% tensile strength and 70.85% elongation percentage of the base metal. The grains in heat-affected zone(HAZ) are thin and equiaxed and the degree of grain coarsening increases as one moves to the weld center line, and the interior of grains are α and α′ structures. The coarse columned and equiaxed grains, which interlace martensitic structures α′ and acicular α structures, are observed in weld zone. The fracture mode is ductile fracture.