期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Microstructure characterization and mechanical properties of TC4-DT titanium alloy after thermomechanical treatment 被引量:13
1
作者 彭小娜 郭鸿镇 +2 位作者 石志峰 秦春 赵张龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期682-689,共8页
Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated.... Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated. Results showed that thermomechanical treatments had a significant influence on the microstructure parameters and higher annealing and aging temperature and lower cooling rate led to the decrease of the volume fraction of primaryαand the size of prior-βand the increase of the width of grain boundary αand secondary α. The highest strength was obtained by solution treatment and aging due to a large amount of transformedβand finer grain boundaryαand secondaryαat the expense of slight decrease of elongation and the ultimate strength, yield strength, elongation, reduction of area were 1100 MPa, 1030 MPa, 13%and 53%separately. A good combination of strength and ductility has been obtained by duplex annealing with the above values 940 MPa, 887.5 MPa, 15%and 51%respectively. Analysis between microstructure parameters and tensile properties showed that with the volume fraction of transformedβphase and the prior-βgrain size increasing, the ultimate strength, yield strength and reduction of area increased, but the elongation decreased. While the width of grain boundary α and secondary α showed a contrary effect on the tensile properties. Elimination of grain boundaryαas well as small prior-βgrain size can also improve ductility. 展开更多
关键词 tc4-dt titanium alloy thermomechanical treatment microstructures tensile properties
下载PDF
Synthesis of Y_2O_3 particle enhanced Ni/TiC composite on TC4 Ti alloy by laser cladding 被引量:18
2
作者 张可敏 邹建新 +2 位作者 李军 于治水 王慧萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1817-1823,共7页
A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer... A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating. 展开更多
关键词 tc4 ti alloy Ni/tiC composite Y2O3 laser cladding HARDNESS surface modification
下载PDF
Surface modification of TC4 Ti alloy by laser cladding with TiC+Ti powders 被引量:16
3
作者 张可敏 邹建新 +2 位作者 李军 于治水 王慧萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2192-2197,共6页
Laser surface cladding was applied on a TC4 Ti alloy to improve its surface properties. Mixed TiC and Ti powders with a TiC-to-Ti mass ratio of 1:3 were put onto the TC4 Ti alloy and subsequently treated by laser bea... Laser surface cladding was applied on a TC4 Ti alloy to improve its surface properties. Mixed TiC and Ti powders with a TiC-to-Ti mass ratio of 1:3 were put onto the TC4 Ti alloy and subsequently treated by laser beam. The microstructure and composition modifications in the surfaee layer were carefully investigated by using SEM, EDX and XRD. Due to melting, liquid state mixing followed by rapid solidification and cooling, a layer with graded microstructures and compositions formed. The TiC powders were completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The inter-dendritic areas were filled with fine a' phase lamellae enrich in A1. Mainly due to the reduced TiC volume fraction with increasing depth, the hardness decreases with increasing depth in the laser clad layer with a maximum value of HV1400, about 4.5 times of the initial one. 展开更多
关键词 tc4 ti alloy tiC laser cladding SEGREGAtiON hardness
下载PDF
Brazing of TiB_w/TC4 composite and Ti60 alloy using TiZrNiCu amorphous filler alloy 被引量:9
4
作者 Xiao-guo SONG Te ZHANG +3 位作者 Yang-ju FENG Cai-wang TAN Jian CAO Wen-cong ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第10期2193-2201,共9页
TiBw/TC4composite was brazed to Ti60alloy successfully using TiZrNiCu amorphous filler alloy,and the interfacialmicrostructures and mechanical properties were characterized by SEM,EDX,XRD and universal tensile testing... TiBw/TC4composite was brazed to Ti60alloy successfully using TiZrNiCu amorphous filler alloy,and the interfacialmicrostructures and mechanical properties were characterized by SEM,EDX,XRD and universal tensile testing machine.The typicalinterfacial microstructure was TiBw/TC4composite/β-Ti+TiB whiskers/(Ti,Zr)2(Ni,Cu)intermetallic layer/β-Ti/Ti60alloy whenbeing brazed at940°C for10min.The interfacial microstructure evolution was influenced strongly by the diffusion and reactionbetween molten fillers and the substrates.Increasing brazing temperature decreased the thickness of brittle(Ti,Zr)2(Ni,Cu)intermetallic layer,which disappeared finally when the brazing temperature exceeded1020°C.Fracture analyses indicated thatcracks were initialized in the brittle intermetallic layer when(Ti,Zr)2(Ni,Cu)phase existed in the brazing seam.The maximumaverage shear strength of joints reached368.6MPa when brazing was conducted at1020°C.Further increasing brazing temperatureto1060°C,the shear strength was decreased due to the formation of coarse lamellar(α+β)-Ti structure. 展开更多
关键词 BRAZING tiBw/tc4 composite ti60 alloy interfacial microstructure fracture
下载PDF
Control of Titanium Alloy Thin Plate Welding Distortion by Trailing Peening
5
作者 Xuesong LIU Hongyuan FANG Shude JI Zhibo DONG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第z1期184-186,共3页
The technology of trailing peening is a kind of promisingly bran-new technology which can be used to control weldingstress and distortion of Ti alloy thin plate. Control of TC4 Ti alloy thn plate welding stress and di... The technology of trailing peening is a kind of promisingly bran-new technology which can be used to control weldingstress and distortion of Ti alloy thin plate. Control of TC4 Ti alloy thn plate welding stress and distortion underthe condition of conventional welding and trailing peening is performed, respectively. The results show that thetechnology of trailing peening effectively reduces deflection and transverse shrinkage of thin plate weldment. Themaximum deflection is decreased from 15 mm under the conditior of conventional welding to 5 mm, while the weldtransverse shrinkage is decreased from 0.5 mm to about 0.1 mm. 展开更多
关键词 CONTROL of RESIDUAL stress and distortion Trailing peening tc4 ti alloy
下载PDF
Study on the J-Integral and Failure Assessment Line of Electron Beam Welded Thick TC4-DT Alloy Joints
6
作者 Lu Wei1,Shi Yaowu1,Li Xiaoyan1,Lei Yongping1,Gong Shuili2,Guan Qiao2,Zhao Haiyan3 1 College of Materials Science and Engineering,Beijing University of Technology,Beijing 100124,China2 Science and Technology on Power Beam Processes Laboratory,Beijing Aeronautical Manufacturing Technology Research Institute,Beijing 100124,China3 Dept of Mechanical Engineering,Tsinghua University,Beijing 100084,China 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第S4期58-62,共5页
The effects of strength mis-matching on J-integral and failure assessment line (FAL) of electron beam welded thick TC4-DT titanium alloy joints have been investigated.Elastic and elastic-plastic finite elements (FE) c... The effects of strength mis-matching on J-integral and failure assessment line (FAL) of electron beam welded thick TC4-DT titanium alloy joints have been investigated.Elastic and elastic-plastic finite elements (FE) calculations on centre crack tensile (CCT) specimens were made,and the condition of 20% strength mis-matching was considered.The results indicate that the limit load of the joint can be substituted by that of the base metal.The error of substitution is less than 5%.The failure assessment lines for both over-matching and under-matching joints are increasingly close to that of the base metal,with the ratio of weld width to specimen width (H/W) decreasing.Moreover,the failure assessment lines of the joints can be devised using the stress-strain curves of the base metal,which will be convenient for the practical application of engineering 展开更多
关键词 electron beam WELDING tc4-dt alloy JOINTS LIMIT load J-INTEGRAL failure assessment line
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部