期刊文献+
共找到3,704篇文章
< 1 2 186 >
每页显示 20 50 100
Small extracellular vesicles derived from human induced pluripotent stem cell-differentiated neural progenitor cells mitigate retinal ganglion cell degeneration in a mouse model of optic nerve injury
1
作者 Tong Li Hui-Min Xing +4 位作者 Hai-Dong Qian Qiao Gao Sheng-Lan Xu Hua Ma Zai-Long Chi 《Neural Regeneration Research》 SCIE CAS 2025年第2期587-597,共11页
Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limit... Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy. 展开更多
关键词 EXOSOME miRNA neural progenitor cell NEURODEGENERATION NEUROINFLAMMATION neuroprotection optic nerve crush optic neuropathy retinal ganglion cell small extracellular vesicles
下载PDF
Perilipin-2 mediates ferroptosis in oligodendrocyte progenitor cells and myelin injury after ischemic stroke
2
作者 Jian Yang Jiang Wu +7 位作者 Xueshun Xie Pengfei Xia Jinxin Lu Jiale Liu Lei Bai Xiang Li Zhengquan Yu Haiying Li 《Neural Regeneration Research》 SCIE CAS 2025年第7期2015-2028,共14页
Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe n... Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia. 展开更多
关键词 BIOINFORMATICS bulk RNA sequencing ferroptosis ischemic stroke myelin injury oligodendrocyte progenitor cell perilipin-2 single-cell RNA sequencing
下载PDF
One-step cell biomanufacturing platform:porous gelatin microcarrier beads promote human embryonic stem cell-derived midbrain dopaminergic progenitor cell differentiation in vitro and survival after transplantation in vivo 被引量:1
3
作者 Lin Feng Da Li +10 位作者 Yao Tian Chengshun Zhao Yun Sun Xiaolong Kou Jun Wu Liu Wang Qi Gu Wei Li Jie Hao Baoyang Hu Yukai Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期458-464,共7页
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a p... Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation. 展开更多
关键词 axonal integrity cell cryopreservation cellular environment cellular niche cell replacement therapy dopaminergic progenitors human pluripotent stem cell mechanical damage neuronal cell delivery Parkinson’s disease small-aperture gelatin microcarriers
下载PDF
Single-cell sequencing technology in diabetic wound healing:New insights into the progenitors-based repair strategies
4
作者 Zhen Xiang Rui-Peng Cai +1 位作者 Yang Xiao Yong-Can Huang 《World Journal of Stem Cells》 SCIE 2024年第5期462-466,共5页
Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding ... Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding the pathogenesis of diabetic wounds,the underlying mechanisms remain unclear.The advent of single-cell RNA sequencing(scRNAseq)has revolutionised biological research by enabling the identification of novel cell types,the discovery of cellular markers,the analysis of gene expression patterns and the prediction of develop-mental trajectories.This powerful tool allows for an in-depth exploration of pathogenesis at the cellular and molecular levels.In this editorial,we focus on progenitor-based repair strategies for diabetic wound healing as revealed by scRNAseq and highlight the biological behaviour of various healing-related cells and the alteration of signalling pathways in the process of diabetic wound healing.ScRNAseq could not only deepen our understanding of the complex biology of diabetic wounds but also identify and validate new targets for inter-vention,offering hope for improved patient outcomes in the management of this challenging complication of DM. 展开更多
关键词 Single-cell sequencing Diabetic wound healing cell subpopulations Heterogeneity PATHOGENESIS progenitor cells
下载PDF
Revolutionizing tumor immunotherapy:unleashing the power of progenitor exhausted T cells
5
作者 Zhang Fang Xinyi Ding +3 位作者 Hao Huang Hongwei Jiang Jingting Jiang Xiao Zheng 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第6期499-512,共14页
In exploring persistent infections and malignancies, a distinctive subgroup of CD8^(+) T cells, progenitor exhausted CD8^(+) T(Tpex) cells, has been identified. These Tpex cells are notable for their remarkable self-r... In exploring persistent infections and malignancies, a distinctive subgroup of CD8^(+) T cells, progenitor exhausted CD8^(+) T(Tpex) cells, has been identified. These Tpex cells are notable for their remarkable self-renewal and rapid proliferation abilities. Recent strides in immunotherapy have demonstrated that Tpex cells expand and differentiate into responsive exhausted CD8^(+) T cells, thus underscoring their critical role in the immunotherapeutic retort. Clinical examinations have further clarified a robust positive correlation between the proportional abundance of Tpex cells and enhanced clinical prognosis. Tpex cells have found noteworthy applications in the formulation of inventive immunotherapeutic approaches against tumors. This review describes the functions of Tpex cells in the tumor milieu, particularly their potential utility in tumor immunotherapy. Precisely directing Tpex cells may be essential to achieving successful outcomes in immunotherapy against tumors. 展开更多
关键词 progenitor exhausted CD8^(+)T cells TCF-1 IMMUNOTHERAPY tumor microenvironment cellular crosstalk
下载PDF
Biological Characteristics of Endothelial Progenitor Cell and Its Influence on Angiogenesis Improvement 被引量:3
6
作者 元虹懿 杜海荣 张明海 《Agricultural Science & Technology》 CAS 2017年第2期303-306,共4页
Endothelial progenitor cell (EPC) is a term that refers to multiple cell types that play roles in the regeneration of the endothelial lining of blood vessels. The EPCs in bone marrow will participate in the internal... Endothelial progenitor cell (EPC) is a term that refers to multiple cell types that play roles in the regeneration of the endothelial lining of blood vessels. The EPCs in bone marrow will participate in the internal circulation in a body sub- jected to the stimulation by external factors such as injury, ischemia or drug. EPCs regulate the angiogenic switch via paracrine secretion of proangiogenic growth factors and by direct luminal incorporation into sprouting nascent vessels. Therefore, this paper reviews the sources, isolation and culture of EPCs, the factors influencing the proliferation and activity of EPCs, and the roles of EPCs in angiogenesis. 展开更多
关键词 Endothelial progenitor cells Myocardial infarction ANGIOGENESIS
下载PDF
Endothelial progenitor cells in cardiovascular diseases 被引量:24
7
作者 Poay Sian Sabrina Lee Kian Keong Poh 《World Journal of Stem Cells》 SCIE CAS 2014年第3期355-366,共12页
Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells(EPCs) are derived from hematopoietic stem cells and are capable of fo... Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells(EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vas-culogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk fac-tors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardio-vascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evalu-ate the challenges facing EPC research and how these may be overcome. 展开更多
关键词 ENDOTHELIAL progenitor cells Cardiovasculardiseases HYPERTENSION Diabetes DYSLIPIDEMIA Therapy STENTS
下载PDF
Transplantation of endothelial progenitor cells transfected with VEGF165 to restore erectile function in diabetic rats 被引量:17
8
作者 Xin Gou Wei-Yang He Ming-Zhao Xiao Ming Qiu Ming Wang Yuan-Zhong Deng Chao-Dong Liu Zao-Bing Tang lie Li Yong Chen 《Asian Journal of Andrology》 SCIE CAS CSCD 2011年第2期332-338,共7页
The present study investigated the effect of transplanting endothelial progenitor cells (EPCs) transfected with the vascular endothelial growth factor gene (VEGF165) into the corpora cavernosa of rats with diabeti... The present study investigated the effect of transplanting endothelial progenitor cells (EPCs) transfected with the vascular endothelial growth factor gene (VEGF165) into the corpora cavernosa of rats with diabetic erectile dysfunction (ED). A rat model of diabetic ED was constructed via intraperitoneal injection of streptozotocin. After streptozotocin treatment, pre-treated EPCs from each of three groups of rats were transplanted into their corpora cavernosa. Our results, following intracavernosal pressure (ICP) monitoring, showed that ICP increased significantly among rats in the trial group when compared to the results from rats in the blank-plasmid and control groups during basal conditions and electrical stimulation (P〈O.01 for both comparisons). Histological examination revealed extensive neovascularisation in the corpora cavernosa of rats in the trial group. Fluorescence microscopy indicated that many of the transplanted EPCs in the trial group survived, differentiated into endothelial cells and integrated into the sites of neovascularisation. Based on the results of this study, we conclude that transplantation of VEGF165-transfected EPCs into the corpora cavernosa of rats with diabetic ED restores erectile function. 展开更多
关键词 cell transplantation diabetes mellitus endothelial progenitor cells erectile dysfunction gene expression vascularendothelial growth factor
下载PDF
Circulating endothelial and progenitor cells:Evidence from acute and long-term exercise effects 被引量:18
9
作者 Matina Koutroumpi Stavros Dimopoulos +2 位作者 Katherini Psarra Theodoros Kyprianou Serafim Nanas 《World Journal of Cardiology》 CAS 2012年第12期312-326,共15页
Circulating bone-marrow-derived cells,named endothelial progenitor cells(EPCs),are capable of maintaining,generating,and replacing terminally differentiated cells within their own specific tissue as a consequence of p... Circulating bone-marrow-derived cells,named endothelial progenitor cells(EPCs),are capable of maintaining,generating,and replacing terminally differentiated cells within their own specific tissue as a consequence of physiological cell turnover or tissue damage due to injury.Endothelium maintenance and restoration of normal endothelial cell function is guaranteed by a complex physiological procedure in which EPCs play a significant role.Decreased number of peripheral blood EPCs has been associated with endothelial dysfunction and high cardiovascular risk.In this review,we initially report current knowledge with regard to the role of EPCs in healthy subjects and the clinical value of EPCs in different disease populations such as arterial hypertension,obstructive sleep-apnea syndrome,obesity,diabetes mellitus,peripheral arterial disease,coronary artery disease,pulmonary hypertension,and heart failure.Recent studies have introduced the novel concept that physical activity,either performed as a single exercise session or performed as part of an exercise training program,results in a significant increase of circulating EPCs.In the second part of this review we provide preliminary evidence from recent studies investigating the effects of acute and long-term exercise in healthy subjects and athletes as well as in disease populations. 展开更多
关键词 CIRCULATING ENDOTHELIAL cellS CIRCULATING progenitor cellS EXERCISE CARDIOVASCULAR disease
下载PDF
Vascular dysfunction in diabetes: The endothelial progenitor cells as new therapeutic strategy 被引量:14
10
作者 Adriana Georgescu 《World Journal of Diabetes》 SCIE CAS 2011年第6期92-97,共6页
The vascular endothelium is a critical determinant of dia- betes-associated vascular complications, and improving endothelial function is an important target for therapy. Diabetes mellitus contributes to endothelial c... The vascular endothelium is a critical determinant of dia- betes-associated vascular complications, and improving endothelial function is an important target for therapy. Diabetes mellitus contributes to endothelial cell injury and dysfunction. Endothelial progenitor cells (EPCs) play a critical role in maintaining endothelial function and might affect the progression of vascular disease. EPCs are essential to blood vessel formation, can differentiate into mature endothelial cells, and promote the repair of damaged endothelium. In diabetes, the circulating EPC count is low and their functionality is impaired. The me- chanisms that underlie this reduced count and impaired functionality are poorly understood. Knowledge of the status of EPCs is critical for assessing the health of the vascular system, and interventions that increase the number of EPCs and restore their angiogenic activity in diabetes may prove to be particularly beneficial. The pre-sent review outlines current thinking on EPCs' therapeutic potential in endothelial dysfunction in diabetes, as well as evidence-based perspectives regarding their use for vascular regenerative medicine. 展开更多
关键词 DIABETES MELLITUS Vascular DYSFUNCTION ENDOTHELIAL progenitor cells
下载PDF
Transplantation of bone marrow-derived endothelial progenitor cells and hepatocyte stem cells from liver fibrosis rats ameliorates liver fibrosis 被引量:9
11
作者 Ling Lan Ran Liu +5 位作者 Ling-Yun Qin Peng Cheng Bo-Wei Liu Bing-Yong Zhang Song-Ze Ding Xiu-Ling Li 《World Journal of Gastroenterology》 SCIE CAS 2018年第2期237-247,共11页
AIM To explore the effectiveness for treating liver fibrosisby combined transplantation of bone marrow-derived endothelial progenitor cells(BM-EPCs) and bone marrow-derived hepatocyte stem cells(BDHSCs) from the liver... AIM To explore the effectiveness for treating liver fibrosisby combined transplantation of bone marrow-derived endothelial progenitor cells(BM-EPCs) and bone marrow-derived hepatocyte stem cells(BDHSCs) from the liver fibrosis environment.METHODS The liver fibrosis rat models were induced with carbon tetrachloride injections for 6 wk. BM-EPCs from rats with liver fibrosis were obtained by different rates of adherence and culture induction. BDHSCs from rats with liver fibrosis were isolated by magnetic bead cell sorting. Tracing analysis was conducted by labeling EPCs with PKH26 in vitro to show EPC location in the liver. Finally, BM-EPCs and/or BDHSCs transplantation into rats with liver fibrosis were performed to evaluate the effectiveness of BM-EPCs and/or BDHSCs on liver fibrosis.RESULTS Normal functional BM-EPCs from liver fibrosis rats were successfully obtained. The co-expression level of CD133 and VEGFR2 was 63.9% ± 2.15%. Transplanted BM-EPCs were located primarily in/near hepatic sinusoids. The combined transplantation of BM-EPCs and BDHSCs promoted hepatic neovascularization, liver regeneration and liver function, and decreased collagen formation and liver fibrosis degree. The VEGF levels were increased in the BM-EPCs(707.10 ± 54.32) and BM-EPCs/BDHSCs group(615.42 ± 42.96), compared with those in the model group and BDHSCs group(P < 0.05). Combination of BM-EPCs/BDHSCs transplantation induced maximal up-regulation of PCNA protein and HGF m RNA levels. The levels of alanine aminotransferase(AST), aspartate aminotransferase, total bilirubin(TBIL), prothrombin time(PT) and activated partial thromboplastin time in the BMEPCs/BDHSCs group were significantly improved, to be equivalent to normal levels(P > 0.05) compared with those in the BDHSC(AST, TBIL and PT, P < 0.05) and BM-EPCs(TBIL and PT, P < 0.05) groups. Transplantation of BM-EPCs/BDHSCs combination significantly reduced the degree of liver fibrosis(staging score of 1.75 ± 0.25 vs BDHSCs 2.88 ± 0.23 or BMEPCs 2.75 ± 0.16, P < 0.05).CONCLUSION The combined transplantation exhibited maximal therapeutic effect compared to that of transplantation of BM-EPCs or BDHSCs alone. Combined transplantation of autogenous BM-EPCs and BDHSCs may represent a promising strategy for the treatment of liver fibrosis, which would eventually prevent cirrhosis and liver cancer. 展开更多
关键词 Bone marrow Endothelial progenitor cells LIVER stem cell cell TRANSPLANTATION LIVER fibrosis
下载PDF
Endothelial progenitor cells, potential biomarkers for diagnosis and prognosis of ischemic stroke: protocol for an observational case-control study 被引量:11
12
作者 Kamini Rakkar Othman Othman +2 位作者 Nikola Sprigg Philip Bath Ulvi Bayraktutan 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第7期1300-1307,共8页
Ischemic stroke is a devastating,life altering event which can severely reduce patient quality of life.Despite years of research there have been minimal therapeutic advances.Endothelial progenitor cells(EPCs),stem cel... Ischemic stroke is a devastating,life altering event which can severely reduce patient quality of life.Despite years of research there have been minimal therapeutic advances.Endothelial progenitor cells(EPCs),stem cells involved in both vasculogenesis and angiogenesis,may be a potential therapeutic target.After a stroke,EPCs migrate to the site of ischemic injury to repair cerebrovascular damage,and their numbers and functional capacity may determine patients'outcome.This study aims to determine whether the number of circulating EPCs and their functional aspects may be used as biomarkers to identify the type(cortical or lacunar)and/or severity of ischemic stroke.The study will also investigate if there are any differences in these characteristics between healthy volunteers over and under 65 years of age.100 stroke patients(50 lacunar and 50 cortical strokes)will be recruited in this prospective,observational case-controlled study.Blood samples will be taken from stroke patients at baseline(within 48 hours of stroke)and days 7,30 and90.EPCs will be counted with flow cytometry.The plasma levels of pro-and anti-angiogenic factors and inflammatory cytokines will also be determined.Outgrowth endothelial cells will be cultured to be used in tube formation,migration and proliferation functional assays.Primary outcome is disability or dependence on day 90 after stroke,assessed by the modified Rankin Scale.Secondary outcomes are changes in circulating EPC numbers and/or functional capacity between patient and healthy volunteers,between patient subgroups and between elderly and young healthy volunteers.Recruitment started in February 2017,167 participants have been recruited.Recruitment will end in November 2019.West Midlands-Coventry&Warwickshire Research Ethics Committee approved this study(REC number:16/WM/0304)on September8,2016.Protocol version:2.0.The Bayraktutan Dunhill Medical Trust EPC Study was registered in ClinicalTrials.gov(NCT02980354)on November 15,2016.This study will determine whether the number of EPCs can be used as a prognostic or diagnostic marker for ischemic strokes and is a step towards discovering if transplantation of EPCs may aid patient recovery. 展开更多
关键词 ageing biomarkers cortical stroke endothelial progenitor cells ischemic stroke lacunar stroke observational study stem cells
下载PDF
Comparison of phenotypic markers and neural differentiation potential of multipotent adult progenitor cells and mesenchymal stem cells 被引量:10
13
作者 Saurabh Pratap Singh Naresh Kumar Tripathy Soniya Nityanand 《World Journal of Stem Cells》 SCIE CAS 2013年第2期53-60,共8页
AIM: To compare the phenotypic and neural differentiation potential of human bone marrow derived multipotent adult progenitor cells (MAPC) and mesenchymal stem cells (MSC). METHODS: Cultures of MAPC and MSC were estab... AIM: To compare the phenotypic and neural differentiation potential of human bone marrow derived multipotent adult progenitor cells (MAPC) and mesenchymal stem cells (MSC). METHODS: Cultures of MAPC and MSC were established in parallel from same samples of human bone marrow (n = 5). Both stem cell types were evaluated for expression of pluripotency markers including Oct-4 and Nanog by immunocytochemistry and reversetranscription polymerase chain reaction (RT-PCR) and expression of standard mesenchymal markers including CD14, CD34, CD44, CD45, CD73, CD90, CD105 andhuman leukocyte antigen (HLA)-ABC by flow cytometry. After treatment with neural induction medium both MAPC and MSC were evaluated for expression of neural proteins [neuronal filament-200 (NF-200) and glial fibrillar acidic protein (GFAP)] by immunocytochemistry and Western blotting and neural genes [NF-200, GFAP, Tau, microtubule-associated protein (MAP)-1B, MAP-2, neuron-specific enolase (NSE) and oligodendrocyte-1 (Olig-1)] by quantitative real-time-PCR. RESULTS: MAPC had small trigonal shaped while MSC had elongated spindle-shaped morphology. The MAPC expressed Oct-4 and Nanog both at gene and protein levels, whereas MSC were negative for these pluripotent markers. MAPC were negative for HLA-ABC while MSC had high expression of HLA-ABC. In addition, MAPC as compared to MSC had significantly lower expression of CD44 (36.56% ± 1.92% vs 98.23% ± 0.51%), CD73 (15.11% ± 2.24% vs 98.53% ± 2.22%) and CD105 (13.81% ± 3.82%vs 95.12% ± 5.65%) (P < 0.001, for all) MAPC cultures compared to MSC cultures treated with neural induction medium had significantly higher fold change expression of NF-200 (0.64), GFAP (0.52), Tau (0.59), MAP-2 (0.72), Olig-1 (0.18) and NSE (0.29) proteins (P < 0.01 for Olig-1 and P < 0.001 for rest) as well as higher fold change expression of genes of NF-200 (1.34),GFAP (1.12),Tau (1.08),MAP-1B (0.92), MAP-2 (1.14) andNSE (0.4) (P < 0.001 for all). CONCLUSION: MAPC can be differentially characterized from MSC as Oct-4 and Nanog positive stem cells with no expression of HLA-ABC and low expression of mesenchymal markers CD44, CD73 and CD105 and when compared to MSC they possess greater predilection for differentiation into neuro-ectodermal lineage. 展开更多
关键词 Bone marrow HUMAN MULTIPOTENT adult progenitor cellS HUMAN mesenchymal Stem cellS PHENOTYPIC MARKERS Neural differentiation
下载PDF
Yiguanjian decoction enhances fetal liver stem/progenitor cell-mediated repair of liver cirrhosis through regulation of macrophage activation state 被引量:11
14
作者 Ying Xu Wei-Wei Fan +7 位作者 Wen Xu Shi-Li Jiang Gao-Feng Chen Cheng Liu Jia-Mei Chen Hua Zhang Ping Liu Yong-Ping Mu 《World Journal of Gastroenterology》 SCIE CAS 2018年第42期4759-4772,共14页
AIM To investigate whether Yiguanjian decoction(YGJ) has an anti-liver cirrhotic effect and whether it regulates hepatic stem cell differentiation.METHODS A rat model of liver cirrhosis was established via subcutaneou... AIM To investigate whether Yiguanjian decoction(YGJ) has an anti-liver cirrhotic effect and whether it regulates hepatic stem cell differentiation.METHODS A rat model of liver cirrhosis was established via subcutaneous injection of carbon tetrachloride(CCl4) for8 wk. From the beginning of the ninth week, the rats received 2-acetylaminofluorene(2-AAF) by oral gavage and a DLK-1+ fetal liver stem/progenitor cell(FLSPC)transplant or an FLSPC transplant in combination with YGJ treatment for 4 wk. In vitro, lipopolysaccharide(LPS)-activated macrophages were co-cultured with WB-F344 cells, and the differentiation of WB-F344 cells was observed in the presence and absence of YGJ treatment.RESULTS FLSPC transplantation improved liver function and histopathology, and inhibited the activation of the noncanonical Wnt signaling pathway, while activating the canonical Wnt signaling pathway. YGJ enhanced the therapeutic effects of FLSPCs and also promoted the liver regeneration differentiation of FLSPCs into hepatocytes.In vitro, LPS-activated macrophages promoted the differentiation of WB-F344 cells into myofibroblasts, and the canonical Wnt signaling was inhibited while the noncanonical Wnt signaling was activated in WB-F344 cells.YGJ suppressed the activation of macrophages and then inhibited non-canonical Wnt signaling and promoted canonical Wnt signaling.CONCLUSION YGJ enhances FLSPC-mediated repair of liver cirrhosis through regulation of macrophage activation state, and YGJ in combination with stem cell transplantation may be a suitable treatment for end-stage liver cirrhosis. 展开更多
关键词 CIRRHOSIS Hepatic progenitor cells Wnt signaling pathway MACROPHAGE 2-acetylaminofluorene Carbon TETRACHLORIDE Yiguanjian DECOCTION
下载PDF
Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries 被引量:9
15
作者 Patompon Wongtrakoongate 《World Journal of Stem Cells》 SCIE CAS 2015年第1期137-148,共12页
Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor ... Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor cells might be occurred through alterations of stem cell fates including an increase in self-renewal capability and a decrease in differentiation and/or apoptosis. This oncogenic evolution of cancer stem and progenitor cells, which often associates with aggressive phenotypes of the tumorigenic cells, is controlled in part by dysregulated epigenetic mechanisms including aberrant DNA methylation leading to abnormal epigenetic memory. Epigenetic therapy by targeting DNA methyltransferases(DNMT) 1, DNMT3 A and DNMT3 B via 5-Azacytidine(Aza) and 5-Aza-2'-deoxycytidine(Aza-d C) has proved to be successfultoward treatment of hematologic neoplasms especially for patients with myelodysplastic syndrome. In this review, I summarize the current knowledge of mechanisms underlying the inhibition of DNA methylation by Aza andAza-d C, and of their apoptotic- and differentiation-inducingeffects on cancer stem and progenitor cells in leukemia, medulloblastoma, glioblastoma, neuroblastoma, prostate cancer, pancreatic cancer and testicular germ cell tumors. Since cancer stem and progenitor cells are implicatedin cancer aggressiveness such as tumor formation, progression, metastasis and recurrence, I propose that effective therapeutic strategies might be achievedthrough eradication of cancer stem and progenitor cells by targeting the DNA methylation machineries to interfere their "malignant memory". 展开更多
关键词 CANCER STEM and progenitor cells DNAMETHYLATION EPIGENETIC therapy Aza-cytidine Azadeoxycytidine
下载PDF
Growth factor- and cytokine-stimulated endothelial progenitor cells in post-ischemic cerebral neovascularization 被引量:10
16
作者 Philip V.Peplow 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第15期1425-1429,共5页
Endothelial progenitor cells are resident in the bone marrow blood sinusoids and circulate in the peripheral circulation. They mobilize from the bone marrow after vascular injury and home to the site of injury where t... Endothelial progenitor cells are resident in the bone marrow blood sinusoids and circulate in the peripheral circulation. They mobilize from the bone marrow after vascular injury and home to the site of injury where they differentiate into endothelial cells. Activation and mobilization of endothelial progenitor cells from the bone marrow is induced via the production and release of endothelial progenitor cell-activating factors and includes specific growth factors and cytokines in response to peripheral tissue hypoxia such as after acute ischemic stroke or trauma. Endotheli- al progenitor cells migrate and home to specific sites following ischemic stroke via growth factor/ cytokine gradients. Some growth factors are less stable under acidic conditions of tissue isch- emia, and synthetic analogues that are stable at low pH may provide a more effective therapeutic approach for inducing endothelial progenitor cell mobilization and promoting cerebral neovascularization following ischemic stroke. 展开更多
关键词 endothelial progenitor cells MOBILIZATION growth factor CYTOKINE neovascularization ischemic stroke
下载PDF
Wharton's jelly mesenchymal stem cells differentiate into retinal progenitor cells 被引量:7
17
作者 Ying Hu Jun Liang +4 位作者 Hongping Cui Xinmei Wang Hua Rong Bin Shao Hao Cui 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第19期1783-1792,共10页
Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serumfree neural stem cellconditioned medium or neural stem cellconditioned medium supplemented with Dkk1, ... Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serumfree neural stem cellconditioned medium or neural stem cellconditioned medium supplemented with Dkk1, a Wnt/13 catenin pathway antagonist, and LeftyA, a Nodal signaling pathway antagonist to induce differentiation into retinal progenitor cells. Inverted microscopy showed that after induction, the spindleshaped or fibroblastlike Wharton's jelly mesenchymal stem cells changed into bulbous cells with numerous processes. Immunofluorescent cytochemical stain ing and reversetranscription PCR showed positive expression of retinal progenitor cell markers, Pax6 and Rx, as well as weakly downregulated nestin expression. These results demonstrate that Wharton's jelly mesenchymal stem cells are capable of differentiating into retinal progenitor cells in vitro. 展开更多
关键词 neural regeneration stem cells Wharton's jelly mesenchymal stem cells microenvironment induc-tion reagent induction retinal progenitor cells nerve cells retinal disease grants-supported paper NEUROREGENERATION
下载PDF
Propofol and remifentanil at moderate and high concentrations affect proliferation and differentiation of neural stem/progenitor cells 被引量:7
18
作者 Qing Li Jiang Lu Xianyu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第22期2002-2007,共6页
Propofol and remifentanil alter intracellular Ca^2+ concentration ([Ca^2+]i) in neural stem/progen-itor cells by activating γ-aminobutyric acid type A receptors and by reducing testosterone levels. However, wheth... Propofol and remifentanil alter intracellular Ca^2+ concentration ([Ca^2+]i) in neural stem/progen-itor cells by activating γ-aminobutyric acid type A receptors and by reducing testosterone levels. However, whether this process affects neural stem/progenitor cell proliferation and differenti-ation remains unknown. In the present study, we applied propofol and remifentanil, alone or in combination, at low, moderate or high concentrations (1, 2–2.5 and 4–5 times the clinically effective blood drug concentration), to neural stem/progenitor cells from the hippocampi of newborn rat pups. Low concentrations of propofol, remifentanil or both had no noticeable effect on cell proliferation or differentiation; however, moderate and high concentrations of propofol and/or remifentanil markedly suppressed neural stem/progenitor cell proliferation and differen-tiation, and induced a decrease in [Ca^2+]i during the initial stage of neural stem/progenitor cell differentiation. We therefore propose that propofol and remifentanil interfere with the prolifer-ation and differentiation of neural stem/progenitor cells by altering [Ca^2+]i. Our ifndings suggest that propofol and/or remifentanil should be used with caution in pediatric anesthesia. 展开更多
关键词 nerve regeneration PROPOFOL REMIFENTANIL neural stem cells neural progenitor cells PROLIFERATION apoptosis DIFFERENTIATION [Ca^2+]i neural regeneration
下载PDF
Migration and differentiation of bone marrow-derived multipotent adult progenitor cells through tail vein injection in a rat model of cerebral ischemia 被引量:7
19
作者 Lei Lei Ruixiang Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第2期118-122,共5页
BACKGROUND: Multipotent adult progenitor cells (MAPCs) from the bone marrow have been shown to differentiate into neurons. OBJECTIVE: To observe migration, survival, and neuronal-like differentiation of MAPCs by t... BACKGROUND: Multipotent adult progenitor cells (MAPCs) from the bone marrow have been shown to differentiate into neurons. OBJECTIVE: To observe migration, survival, and neuronal-like differentiation of MAPCs by tail vein injection. DESIGN, TIME AND SETTING: Randomized, controlled experiment of neural tissue engineering was performed at the Laboratory for Cardio-Cerebrovascular Disease, Hospital of Integrated Traditional and Western Medicine, Tongji Medical College of Huazhong University of Science and Technology between September 2006 and August 2007. MATERIALS: Eighty Sprague Dawley rats, 3-6 months old, underwent cerebral ischemia/reperfusion by thread technique, and were randomly divided into model and MAPCs groups (n = 40). METHODS: Mononuclear cells were harvested from bone marrow using the FicolI-Paque density gradient centrifugation method. After removing CD45 and glycophorin A-positive cells (GLYA+) with immunomagnetic beads, CD45 GLYA adult progenitor cells were labeled with bromodeoxyuridine (5-bromo-2-deoxyuridine, BrdU). A total of 1 mL cell suspension, containing 5 × 10^6 MAPCs, was injected into the MAPCs group through the tail vein. A total of 1 mL normal saline was injected into the model rats. MAIN OUTCOME MEASURES: After 60 days, BrdU and neuron-specific enolase double-positive cells were observed using immunofluorescence. Cell morphology was observed under electron microscopy, and nerve growth factor mRNA was measured through RT-PCR. In addition, rat neurological functions were measured with behavioral tests. RESULTS: Immunofluorescence revealed that MAPCs positive for BrdU and neuron specific enolase were found surrounding the ischemic focus in the MAPCs group. Microscopic observation suggested that MAPCs-derived neuronal-like cells connected with other nerve cells to form synapses. Compared with the model animals, the level of nerve growth factor mRNA was significantly upregulated in rats injected with MAPCs (P 〈 0.05). In addition, rats in the MAPCs group performed better in behavioral tests than the model group on days 28 and 60 (P 〈 0.05). CONCLUSION: Transplanted MAPCs migrated to the ischemic region, survived, and differentiated into neuronal-like cells, resulting in stimulation of nerve growth factor mRNA and improved neurological function in ischemic rats. 展开更多
关键词 adult progenitor cells TRANSPLANTATION neuronal differentiation brain ischemia rats
下载PDF
Endothelial progenitor cells as factors in neovascularization and endothelial repair 被引量:7
20
作者 Stefano Capobianco Venu Chennamaneni Mayank Mittal 《World Journal of Cardiology》 CAS 2010年第12期411-420,共10页
Endothelial progenitor cells(EPCs)are a heterogeneous population of cells that are provided by the bone marrow and other adult tissue in both animals and humans.They express both hematopoietic and endothelial surface ... Endothelial progenitor cells(EPCs)are a heterogeneous population of cells that are provided by the bone marrow and other adult tissue in both animals and humans.They express both hematopoietic and endothelial surface markers,which challenge the classic dogma that the presumed differentiation of cells into angioblasts and subsequent endothelial and vascular differentiation occurred exclusively in embryonic development.This breakthrough stimulated research to understand the mechanism(s)underlying their physiologic function to allow development of new therapeutic options.One focus has been on their ability to form new vessels in injured tissues,and another has been on their ability to repair endothelial damage and restore both monolayer integrity and endothelial function in denuded vessels.Moreover,measures of their density have been shown to be a better predictor of cardiovascular events,both in healthy and coronary artery disease populations than the classical tools used in the clinic to evaluate the risk stratification.In the present paper we review the effects of EPCs on revascularization and endothelial repair in animal models and human studies,in an attempt to better understand their function,which may lead to potential advancement in clinical management. 展开更多
关键词 Atherosclerosis Bone MARROW ENDOTHELIAL dysfunction ENDOTHELIAL progenitor cellS NEOVASCULARIZATION Stem cellS
下载PDF
上一页 1 2 186 下一页 到第
使用帮助 返回顶部