Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discon...Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discontinuous transmission (DTX)at user equipment (UE) is adopted to reduce the interferencecorrelation across different time slots. By utilizingstochastic geometry, we analytically derive themean local delay and energy efficiency (EE) of an uplinkHetNet with UE random DTX scheme under theDUDA mode. These expressions are further approximatedas closed forms under reasonable assumptions.Our results reveal that under the DUDA mode, there isan optimal EE with respect to mute probability underthe finite local delay constraint. In addition, with thesame finite mean local delay as under the coupled uplinkand downlink access (CUDA) mode, the HetNetsunder the DUDA mode can achieve a higher EE witha lower mute probability.展开更多
Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interfere...Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD).展开更多
随着城市人口数量的不断增长,城市轨道交通由于其载客量大、便利、准时、安全等优点逐渐成为大中型城市居民出行的首选交通工具。而城市轨道交通的核心系统一基于通信的列车控制(Communication Based Train Control,CBTC)系统,在传输带...随着城市人口数量的不断增长,城市轨道交通由于其载客量大、便利、准时、安全等优点逐渐成为大中型城市居民出行的首选交通工具。而城市轨道交通的核心系统一基于通信的列车控制(Communication Based Train Control,CBTC)系统,在传输带宽和传输效率方面也面临着更加尖锐的问题与挑战,为增大和提高车地无线通信的带宽和效率,引入时分长期演进(Time Division Long Term Evolution,TD-LTE)系统作为车地无线通信的承载网络是非常必要的。展开更多
基金supported in part by the National Key R&D Program of China under Grant 2021YFB 2900304the Shenzhen Science and Technology Program under Grants KQTD20190929172545139 and ZDSYS20210623091808025.
文摘Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discontinuous transmission (DTX)at user equipment (UE) is adopted to reduce the interferencecorrelation across different time slots. By utilizingstochastic geometry, we analytically derive themean local delay and energy efficiency (EE) of an uplinkHetNet with UE random DTX scheme under theDUDA mode. These expressions are further approximatedas closed forms under reasonable assumptions.Our results reveal that under the DUDA mode, there isan optimal EE with respect to mute probability underthe finite local delay constraint. In addition, with thesame finite mean local delay as under the coupled uplinkand downlink access (CUDA) mode, the HetNetsunder the DUDA mode can achieve a higher EE witha lower mute probability.
文摘Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD).
文摘随着城市人口数量的不断增长,城市轨道交通由于其载客量大、便利、准时、安全等优点逐渐成为大中型城市居民出行的首选交通工具。而城市轨道交通的核心系统一基于通信的列车控制(Communication Based Train Control,CBTC)系统,在传输带宽和传输效率方面也面临着更加尖锐的问题与挑战,为增大和提高车地无线通信的带宽和效率,引入时分长期演进(Time Division Long Term Evolution,TD-LTE)系统作为车地无线通信的承载网络是非常必要的。
文摘针对非正交多址接入(non-orthogonal multiple access,NOMA)系统在无线环境下传输速率较低的问题,利用智能反射面(intelligent reflecting surface,IRS)可以改变入射信号相移的特性,提出一种基于IRS辅助上行NOMA和速率最大化算法.首先,在满足每个用户功率、每个用户最小速率、IRS相位偏移的约束条件下,构建一个联合用户功率、IRS相移多变量优化模型;然后,通过问题公式的等效简化将原非凸问题转换为2个容易处理的子问题;最后,通过交替方向乘子法(alternating direction method of multipliers,ADMM)、引入松弛变量等方法对子问题进行求解.仿真结果表明,相较于逐次凸逼近法(successiveconvexapproximation,SCA)所提出的算法平均提升了系统0.4 bit/(s·Hz)的和速率,证明了基于ADMM的算法有效提高系统的和速率.