期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Topology Driven Cooperative Self Scheduling for Improved Lifetime Maximization in WSN 被引量:1
1
作者 G.Brindha P.Ezhilarasi 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期445-458,共14页
In Wireless Sensor Network(WSN),scheduling is one of the important issues that impacts the lifetime of entire WSN.Various scheduling schemes have been proposed earlier to increase the lifetime of the network.Still,the... In Wireless Sensor Network(WSN),scheduling is one of the important issues that impacts the lifetime of entire WSN.Various scheduling schemes have been proposed earlier to increase the lifetime of the network.Still,the results from such methods are compromised in terms of achieving high lifetime.With this objective to increase the lifetime of network,an Efficient Topology driven Cooperative Self-Scheduling(TDCSS)model is recommended in this study.Instead of scheduling the network nodes in a centralized manner,a combined approach is proposed.Based on the situation,the proposed TDCSS approach performs scheduling in both the ways.By sharing the node statistics in a periodic manner,the overhead during the transmission of control packets gets reduced.This in turn impacts the lifetime of all the nodes.Further,this also reduces the number of idle conditions of each sensor node which is required for every cycle.The proposed method enables every sensor to schedule its own conditions according to duty cycle and topology constraints.Central scheduler monitors the network conditions whereas total transmissions occurs at every cycle.According to this,the source can infer the possible routes in a cycle and approximate the available routes.Further,based on the statistics of previous transmissions,the routes towards the sink are identified.Among the routes found,a single optimal route with energy efficiency is selected to perform data transmission.This cooperative approach improves the lifetime of entire network with high throughput performance. 展开更多
关键词 WSN SELF-SCHEDULING tdcss SCHEDULING lifetime maximization quality of service
下载PDF
Fixed-Time Adaptive Time-Varying Matrix Projective Synchronization of Time-Delayed Chaotic Systems with Different Dimensions
2
作者 Peng Zheng Xiaozhen Guo Guoguang Wen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第6期1451-1463,共13页
This paper deals with the fixed-time adaptive time-varying matrix projective synchronization(ATVMPS)of different dimensional chaotic systems(DDCSs)with time delays and unknown parameters.Firstly,to estimate the unknow... This paper deals with the fixed-time adaptive time-varying matrix projective synchronization(ATVMPS)of different dimensional chaotic systems(DDCSs)with time delays and unknown parameters.Firstly,to estimate the unknown parameters,adaptive parameter updated laws are designed.Secondly,to realize the fixed-time ATVMPS of the time-delayed DDCSs,an adaptive delay-unrelated controller is designed,where time delays of chaotic systems are known or unknown.Thirdly,some simple fixed-time ATVMPS criteria are deduced,and the rigorous proof is provided by employing the inequality technique and Lyapunov theory.Furthermore,the settling time of fixed-time synchronization(Fix-TS)is obtained,which depends only on controller parameters and system parameters and is independent of the system’s initial states.Finally,simulation examples are presented to validate the theoretical analysis. 展开更多
关键词 Time-varying matrix projective synchronization(TVMPS) fixed-time control unknown parameters different dimensions time-delayed chaotic systems(tdcss)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部