The second-order nonlinear optical (NLO) properties of 5,10,15-triphenylcorrole (TPC), 5,10,15,20-tetraphenylporphyrin (TPP) and L-amino acid bridged bis-corroles 1,2,3 and 4 have been calculated by using TDHF/P...The second-order nonlinear optical (NLO) properties of 5,10,15-triphenylcorrole (TPC), 5,10,15,20-tetraphenylporphyrin (TPP) and L-amino acid bridged bis-corroles 1,2,3 and 4 have been calculated by using TDHF/PM3 method based on the RHF/6-31G (TPC and TPP) or semiempirical PM3 (1, 2, 3, 4) optimized geometries. Calculation results showed TPC and TPP have C1 and D2h symmetry, respectively when N-H protons are localized on the nitrogen atoms. TPC is the second-order NLO active chromophore due to the cancellation of centrosymmetrical structure and its first hyperpolarizability β increases to 11.524×10^-30 esu. Under electrical dipole approximation, βvalues of bis-corroles 1, 2, 3 and 4 vary from 9.831×10^-30 to 14.221×10^-30 esu, and no much improvement in the first hyperpolarizability was observed as compared to TPC monomer.However, β values of bis-corroles 1, 2, 3 and 4 are improved by about 4 times as compared to their bis-porphyrin counterparts. The analysis of β components indicates that β of this kind of bis-corroles is mainly contributed from its radial component βr. With the variation of amino acid side chains, βHRS, β,βxyz, βr and βa of bis-corroles change remarkably. Chiral L-amino acid bridged bis-corroles 2, 3 and 4 have a right-handed helix structure, and their chiral component βxyz matches βxyz ∝ r^2 ζ/L^4 (helix parameters), showing the second-order chiral NLO response of these bis-corroles could be described by one-electron helical model theory. It was found that the radial component βr of chiral helix bis-corroles also matches βr ∝ r^2 ζ/L^4.展开更多
Static second-order nonlinear optical effects of amino acid zinc(II) porphyrins 1, 2, 3 and 4 were calculated by the TDHF/PM3 method based on the molecular structures optimized at the semiempirical PM3 quantum chemi...Static second-order nonlinear optical effects of amino acid zinc(II) porphyrins 1, 2, 3 and 4 were calculated by the TDHF/PM3 method based on the molecular structures optimized at the semiempirical PM3 quantum chemistry level, showing due to the cancellation of symmetric center, these amino acid zinc(II) porphyrins exhibit second order nonlinear optical response. The analysis of β components indicated that these amino acid zinc(II) porphyrins are of multipola- rizabilities, and they may be ascribed as the “mixture” of octupolar and dipoar molecules with ||βJ=3||/||βJ=1|| ≈ 5. It is found that there are no significant differences between the static β values of non-chiral and chiral amino acid zinc(II) porphyrins. However, the βxyz component, which is quite important to quadratic macroscopic χ (2) susceptibility of chiral material, is increased significantly with the increase of side chain group of amino acids.展开更多
基金Supported by the NNSFC (20476034), Research Grants Council of Hongkong and SRF for ROCS, State Education Ministry
文摘The second-order nonlinear optical (NLO) properties of 5,10,15-triphenylcorrole (TPC), 5,10,15,20-tetraphenylporphyrin (TPP) and L-amino acid bridged bis-corroles 1,2,3 and 4 have been calculated by using TDHF/PM3 method based on the RHF/6-31G (TPC and TPP) or semiempirical PM3 (1, 2, 3, 4) optimized geometries. Calculation results showed TPC and TPP have C1 and D2h symmetry, respectively when N-H protons are localized on the nitrogen atoms. TPC is the second-order NLO active chromophore due to the cancellation of centrosymmetrical structure and its first hyperpolarizability β increases to 11.524×10^-30 esu. Under electrical dipole approximation, βvalues of bis-corroles 1, 2, 3 and 4 vary from 9.831×10^-30 to 14.221×10^-30 esu, and no much improvement in the first hyperpolarizability was observed as compared to TPC monomer.However, β values of bis-corroles 1, 2, 3 and 4 are improved by about 4 times as compared to their bis-porphyrin counterparts. The analysis of β components indicates that β of this kind of bis-corroles is mainly contributed from its radial component βr. With the variation of amino acid side chains, βHRS, β,βxyz, βr and βa of bis-corroles change remarkably. Chiral L-amino acid bridged bis-corroles 2, 3 and 4 have a right-handed helix structure, and their chiral component βxyz matches βxyz ∝ r^2 ζ/L^4 (helix parameters), showing the second-order chiral NLO response of these bis-corroles could be described by one-electron helical model theory. It was found that the radial component βr of chiral helix bis-corroles also matches βr ∝ r^2 ζ/L^4.
基金This work was supported by the NNSFC (20476034 NSFC/HKUST43)+1 种基金 NSF of Guangdong Province (000489) and SRF for ROCS State Education Ministry.
文摘Static second-order nonlinear optical effects of amino acid zinc(II) porphyrins 1, 2, 3 and 4 were calculated by the TDHF/PM3 method based on the molecular structures optimized at the semiempirical PM3 quantum chemistry level, showing due to the cancellation of symmetric center, these amino acid zinc(II) porphyrins exhibit second order nonlinear optical response. The analysis of β components indicated that these amino acid zinc(II) porphyrins are of multipola- rizabilities, and they may be ascribed as the “mixture” of octupolar and dipoar molecules with ||βJ=3||/||βJ=1|| ≈ 5. It is found that there are no significant differences between the static β values of non-chiral and chiral amino acid zinc(II) porphyrins. However, the βxyz component, which is quite important to quadratic macroscopic χ (2) susceptibility of chiral material, is increased significantly with the increase of side chain group of amino acids.