基于TDMA机制的MAC层接入协议在工业控制网络的实时性保证方面具有极大的优势。然而要保证该机制微秒级的时隙调度,网络中所有的节点必须保持时间同步的高精度。针对现有的一些同步算法并不能完全满足这种高精度时间同步要求的问题,在...基于TDMA机制的MAC层接入协议在工业控制网络的实时性保证方面具有极大的优势。然而要保证该机制微秒级的时隙调度,网络中所有的节点必须保持时间同步的高精度。针对现有的一些同步算法并不能完全满足这种高精度时间同步要求的问题,在传统的时间同步算法基础上,添加时钟漂移预测与补偿机制,改进得到一种具有同步精度高、能量消耗低等优点的同步算法——ITR(Improved Wireless Sensor Networks Time Synchronization Algorithm Based On TPSN and RBS),并在Router BOARD493G路由节点上进行实验测试。实验结果表明ITR同步算法的平均同步误差比传统同步算法降低了约52%。展开更多
This paper proposes a negotiation-based TDMA scheme for ad hoc networks, which was modeled as an asynchronous myopic repeated game. Compared to the traditional centralized TDMA schemes, our scheme operates in a decent...This paper proposes a negotiation-based TDMA scheme for ad hoc networks, which was modeled as an asynchronous myopic repeated game. Compared to the traditional centralized TDMA schemes, our scheme operates in a decentralized manner and is scalable to topology changes. Simulation results show that, with respect to the coloring quality, the performance of our scheme is close to that of the classical centralized algorithms with much lower complexity.展开更多
文摘基于TDMA机制的MAC层接入协议在工业控制网络的实时性保证方面具有极大的优势。然而要保证该机制微秒级的时隙调度,网络中所有的节点必须保持时间同步的高精度。针对现有的一些同步算法并不能完全满足这种高精度时间同步要求的问题,在传统的时间同步算法基础上,添加时钟漂移预测与补偿机制,改进得到一种具有同步精度高、能量消耗低等优点的同步算法——ITR(Improved Wireless Sensor Networks Time Synchronization Algorithm Based On TPSN and RBS),并在Router BOARD493G路由节点上进行实验测试。实验结果表明ITR同步算法的平均同步误差比传统同步算法降低了约52%。
基金supported in part by National Science Fund for Distinguished Young Scholars under Grant No.60725105National Key Basic Research Program of China ( 973 Program ) under Grant No.2009CB320404+2 种基金Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0852National Natural Science Foundation of China under Grants No.60972047, 61072068111 Project under Grant No.B08038
文摘This paper proposes a negotiation-based TDMA scheme for ad hoc networks, which was modeled as an asynchronous myopic repeated game. Compared to the traditional centralized TDMA schemes, our scheme operates in a decentralized manner and is scalable to topology changes. Simulation results show that, with respect to the coloring quality, the performance of our scheme is close to that of the classical centralized algorithms with much lower complexity.