为了解决现有方法难以对宽带跳频时分多址(frequency hopping-time division multiple access,FH-TDMA)辐射源网群定位的问题,提出一种仅利用波达方向(direction of arrival,DOA)信息的多站定位及网群划分方法。首先通过模拟滤波对各站...为了解决现有方法难以对宽带跳频时分多址(frequency hopping-time division multiple access,FH-TDMA)辐射源网群定位的问题,提出一种仅利用波达方向(direction of arrival,DOA)信息的多站定位及网群划分方法。首先通过模拟滤波对各站接收到的信号进行频段划分,通过基于多相滤波的数字信道化方法把信号输出到多个信道中;然后通过直接定位(direct position determination,DPD)算法计算得出各时隙辐射源的位置;最后先通过不同参数的基于密度的噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法选择出最佳的辐射源定位结果,再根据提出的基于先验信息的改进K-means聚类算法进行网群划分。所提方法实现了采样率和信号处理速率的降低,且无需站间严格的时间同步。结果表明,所提方法有效估计出了辐射源的数量、位置,以及网群划分情况。展开更多
A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM...A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM technology to guarantee the security, while the upstream traffics pass through the same optical fiber by the common time division multiple access (TDMA) technology to decrease the cost. This schemes are denoted as OCDM/TDMA-PON, which can be applied to an optical access network (OAN) with full services on demand, such as Internet protocol, video on demand, tele-presence and high quality audio. The proposed OCDM/TDMA-PON scheme combines advantages of PON, TDMA, and OCDM technology. Simulation results indicate that the designed scheme improves the OAN performance, and enhances flexibility and scalability of the system.展开更多
This paper is focused on the multiuser implementation of fusion of radar and communication(RadCom)in internet-of-vehicles(IoV)scenarios.Traditional time-division multiple access(TDMA)technology degrades the velocity d...This paper is focused on the multiuser implementation of fusion of radar and communication(RadCom)in internet-of-vehicles(IoV)scenarios.Traditional time-division multiple access(TDMA)technology degrades the velocity detection performance of orthogonal frequency-division multiplexing(OFDM)-based RadCom systems.We propose a new TDMA approach for OFDM-based RadCom systems,where multiuser communication and radar detection are completed synchronously.We consider a continuous-wave TDMA OFDM structure in which random user data or Zadoff-Chu(ZC)sequences are transmitted in one symbol duration to ensure detection performance.As an application of interference cancellation method,user data demodulation and environment sensing can be simultaneously accomplished by our proposed approach.We carry out numerical evaluation and show wireless communication and radar detection performance over the continuous-wave TDMA OFDM-based RadCom approach.展开更多
When coexisting with dual-link primary systems,secondary systems in cognitive radios should first distinguish between the primary downlinks and uplinks in order to efficiently explore their respective spectrum opportu...When coexisting with dual-link primary systems,secondary systems in cognitive radios should first distinguish between the primary downlinks and uplinks in order to efficiently explore their respective spectrum opportunities.Because of the assumptive prior knowledge about the time-frequency locations of primary downlinks and uplinks,this procedure is usually not considered in the design of cognitive radios.In this paper,a cooperative method is proposed for the downlink/uplink identification of time-division duplex-based orthogonal frequency-division multiple access systems.In this method,the power level of the primary link is extracted as the key feature,which also contributes to the subsequent cognitive behaviours.The effects of the primary and secondary systems and the effects of the detection parameters on the identification accuracy are all analysed in detail.The simulation results show that the proposed method can identify the primary links precisely and quickly with low complexity.展开更多
车载自组网(vehicular ad hoc network,VANET)中的分布式TDMA方法通常多出没有被节点利用的空闲时隙,未能充分利用无线信道资源,且不能避免由于信道条件差所导致的丢包现象.与此同时,协助通信近年来引起了学术界和工业界的广泛关注,该...车载自组网(vehicular ad hoc network,VANET)中的分布式TDMA方法通常多出没有被节点利用的空闲时隙,未能充分利用无线信道资源,且不能避免由于信道条件差所导致的丢包现象.与此同时,协助通信近年来引起了学术界和工业界的广泛关注,该方法利用了无线信道的广播特性,能够有效地修复信道,提高无线通信的可靠性.针对VANET应用场合,提出了一种MAC层数据协助重发方法,即协助分布式TDMA方法(cooperative distributed TDMA,Co-DTDMA).在Co-DTDMA中,如果源节点未成功发送数据,则附近的邻居节点利用未分配的空闲时隙协助重发源节点数据.与传统的协助通信方法不同,Co-DTDMA中的所有操作都以分布式方式进行,不依赖任何中心控制节点,因而适应于VANET应用场合.此外,Co-DTDMA仅利用未分配的空闲时隙协助重发数据,不影响网络中的正常数据传输.理论分析和仿真实验表明:Co-DTDMA显著地提高了数据成功接收概率,降低了数据传输时延.展开更多
文摘为了解决现有方法难以对宽带跳频时分多址(frequency hopping-time division multiple access,FH-TDMA)辐射源网群定位的问题,提出一种仅利用波达方向(direction of arrival,DOA)信息的多站定位及网群划分方法。首先通过模拟滤波对各站接收到的信号进行频段划分,通过基于多相滤波的数字信道化方法把信号输出到多个信道中;然后通过直接定位(direct position determination,DPD)算法计算得出各时隙辐射源的位置;最后先通过不同参数的基于密度的噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法选择出最佳的辐射源定位结果,再根据提出的基于先验信息的改进K-means聚类算法进行网群划分。所提方法实现了采样率和信号处理速率的降低,且无需站间严格的时间同步。结果表明,所提方法有效估计出了辐射源的数量、位置,以及网群划分情况。
文摘A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM technology to guarantee the security, while the upstream traffics pass through the same optical fiber by the common time division multiple access (TDMA) technology to decrease the cost. This schemes are denoted as OCDM/TDMA-PON, which can be applied to an optical access network (OAN) with full services on demand, such as Internet protocol, video on demand, tele-presence and high quality audio. The proposed OCDM/TDMA-PON scheme combines advantages of PON, TDMA, and OCDM technology. Simulation results indicate that the designed scheme improves the OAN performance, and enhances flexibility and scalability of the system.
基金supported in part by the National Natural Science Foundation of China(No.61971092,No.62222121)in part by the Sichuan Province Foundation for Distinguished Young Scholars(2020JDJQ0023)in part by the Fundamental Research Funds for the Central Universities(ZYGX2020ZB045,ZYGX2019J123).
文摘This paper is focused on the multiuser implementation of fusion of radar and communication(RadCom)in internet-of-vehicles(IoV)scenarios.Traditional time-division multiple access(TDMA)technology degrades the velocity detection performance of orthogonal frequency-division multiplexing(OFDM)-based RadCom systems.We propose a new TDMA approach for OFDM-based RadCom systems,where multiuser communication and radar detection are completed synchronously.We consider a continuous-wave TDMA OFDM structure in which random user data or Zadoff-Chu(ZC)sequences are transmitted in one symbol duration to ensure detection performance.As an application of interference cancellation method,user data demodulation and environment sensing can be simultaneously accomplished by our proposed approach.We carry out numerical evaluation and show wireless communication and radar detection performance over the continuous-wave TDMA OFDM-based RadCom approach.
基金supported by the National Natural Science Foundation of China under Grants No. 60832008,No. 60902001
文摘When coexisting with dual-link primary systems,secondary systems in cognitive radios should first distinguish between the primary downlinks and uplinks in order to efficiently explore their respective spectrum opportunities.Because of the assumptive prior knowledge about the time-frequency locations of primary downlinks and uplinks,this procedure is usually not considered in the design of cognitive radios.In this paper,a cooperative method is proposed for the downlink/uplink identification of time-division duplex-based orthogonal frequency-division multiple access systems.In this method,the power level of the primary link is extracted as the key feature,which also contributes to the subsequent cognitive behaviours.The effects of the primary and secondary systems and the effects of the detection parameters on the identification accuracy are all analysed in detail.The simulation results show that the proposed method can identify the primary links precisely and quickly with low complexity.
文摘车载自组网(vehicular ad hoc network,VANET)中的分布式TDMA方法通常多出没有被节点利用的空闲时隙,未能充分利用无线信道资源,且不能避免由于信道条件差所导致的丢包现象.与此同时,协助通信近年来引起了学术界和工业界的广泛关注,该方法利用了无线信道的广播特性,能够有效地修复信道,提高无线通信的可靠性.针对VANET应用场合,提出了一种MAC层数据协助重发方法,即协助分布式TDMA方法(cooperative distributed TDMA,Co-DTDMA).在Co-DTDMA中,如果源节点未成功发送数据,则附近的邻居节点利用未分配的空闲时隙协助重发源节点数据.与传统的协助通信方法不同,Co-DTDMA中的所有操作都以分布式方式进行,不依赖任何中心控制节点,因而适应于VANET应用场合.此外,Co-DTDMA仅利用未分配的空闲时隙协助重发数据,不影响网络中的正常数据传输.理论分析和仿真实验表明:Co-DTDMA显著地提高了数据成功接收概率,降低了数据传输时延.