In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localizati...In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localization algorithm. The TDOA/FDOA (Frequency Difference of Arrival) localization algorithm is used to optimize the GDOP (geometric dilution of precision) of four-Satellite localization. The simulation results show that the absolute position measurement accuracy has little influence on TDOA/FDOA localization accuracy as compared with TDOA localization. Under the same conditions, TDOA/FDOA localization has better accuracy and its GDOP shows more uniform distribution in diamond configuration case. The localization accuracy of four-Satellite TDOA/FDOA is better than the localization accuracy of four-Satellite TDOA.展开更多
The source location based on the hybrid time difference of arrival(TDOA)/frequency difference of arrival(FDOA) is a basic problem in wireless sensor networks, and the layout of sensors in the hybrid TDOA/FDOA position...The source location based on the hybrid time difference of arrival(TDOA)/frequency difference of arrival(FDOA) is a basic problem in wireless sensor networks, and the layout of sensors in the hybrid TDOA/FDOA positioning will greatly affect the accuracy of positioning. Using unmanned aerial vehicle(UAV) as base stations, by optimizing the trajectory of the UAV swarm, an optimal positioning configuration is formed to improve the accuracy of the target position and velocity estimation. In this paper, a hybrid TDOA/FDOA positioning model is first established, and the positioning accuracy of the hybrid TDOA/FDOA under different positioning configurations and different measurement errors is simulated by the geometric dilution of precision(GDOP) factor. Second, the Cramer-Rao lower bound(CRLB) matrix of hybrid TDOA/FDOA location under different moving states of the target is derived theoretically, the objective function of the track optimization is obtained, and the track of the UAV swarm is optimized in real time. The simulation results show that the track optimization effectively improves the accuracy of the target position and velocity estimation.展开更多
To improve the estimation accuracy,a novel time delay estimation(TDE)method based on the closed-form offset compensation is proposed.Firstly,we use the generalized cross-correlation with phase transform(GCC-PHAT)metho...To improve the estimation accuracy,a novel time delay estimation(TDE)method based on the closed-form offset compensation is proposed.Firstly,we use the generalized cross-correlation with phase transform(GCC-PHAT)method to obtain the initial TDE.Secondly,a signal model using normalized cross spectrum is established,and the noise subspace is extracted by eigenvalue decomposition(EVD)of covariance matrix.Using the orthogonal relation between the steering vector and the noise subspace,the first-order Taylor expansion is carried out on the steering vector reconstructed by the initial TDE.Finally,the offsets are compensated via simple least squares(LS).Compared to other state-of-the-art methods,the proposed method significantly reduces the computational complexity and achieves better estimation performance.Experiments on both simulation and real-world data verify the efficiency of the proposed approach.展开更多
Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on...Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on-site launching and generates real-time location data,enabling fire rescuers to arrive at the intended spot faster and correctly for effective and precise rescue.Auto-positioning with step-by-step instructions is proposed when launching the locating system,while no extra measuring instrument like Total Station(TS)is needed.Real-time location tracking is provided via a 3D space real-time locating system(RTLS)constructed using Ultra-wide Bandwidth technology(UWB),which requires electromagnetic waves to pass through concrete walls.A hybrid weighted least squares with a time difference of arrival(WLS/TDOA)positioning method is proposed to address real path-tracking issues in 3D space and to meet RTLS requirements for quick computing in real-world applications.The 3D WLS/TDOA algorithm is theoretically constructed with the Cramer-Rao lower bound(CRLB).The computing complexity is reduced to the lower bound for embedded hardware to directly compute the time differential of the arriving signals using the time-to-digital converter(TDC).The results of the experiments show that the errors are controlled when the positioning algorithm is applied in various complicated situations to fulfill the requirements of engineering applications.The statistical analysis of the data reveals that the proposed UWB RTLS auto-positioning system can track target tags with an accuracy of 0.20 m.展开更多
针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并...针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并利用最小二乘算法对目标位置进行粗估计。其次,考虑测量误差和传感器位置误差,构建目标定位误差和传感器位置的联合方程,并利用加权最小二乘求解。最后,利用目标定位误差对目标位置粗估计值进行修正,得到更精确的定位结果。仿真实验表明,所提算法可对目标位置和传感器位置进行联合估计,相较于已有算法具有更高的定位精度,更适用于传感器位置存在误差情况下的水下目标定位。展开更多
For Time Difference Of Arrival(TDOA) location based on multi-ground stations scene,two direct solution methods are proposed to solve the target position in TDOA location.Therein,the solving methods are realized in the...For Time Difference Of Arrival(TDOA) location based on multi-ground stations scene,two direct solution methods are proposed to solve the target position in TDOA location.Therein,the solving methods are realized in the rectangular and polar coordinates.On the condition of rectangular coordinates,first of all,it solves the radial range between the target and reference station,then cal-culates the location of the target.In the case of polar coordinates,the azimuth between the target and reference station is solved first,then the radial range between the target and reference station is figured out,finally the location of the target is obtained.Simultaneously,the simulation and comparison analysis are given in detail,and show that the polar solving method has the better fuzzy performance than that of rectangular coordinate.展开更多
在TDOA(time difference of arrival)目标模拟系统中,采用微波光子链路传输包含精确TDOA信息的多路多频段目标模拟信号,为保证TDOA信息的精度足够高,需要精确测量目标模拟信号经过光子链路的传输延时。从特定工程应用角度提出一种光子...在TDOA(time difference of arrival)目标模拟系统中,采用微波光子链路传输包含精确TDOA信息的多路多频段目标模拟信号,为保证TDOA信息的精度足够高,需要精确测量目标模拟信号经过光子链路的传输延时。从特定工程应用角度提出一种光子链路传输延时测量方法,通过专用延时测量芯片实现传输延时高分辨率、高精度测量,通过延时测量信号和目标模拟信号分时占用单根光纤的相同光传输波道,实现光子链路传输延时测量和目标模拟信号传输分时工作,从机理上满足了精确测量光子链路传输延时所需硬件条件。试验结果:表明该方法可精确测量目标模拟信号经过光子链路的传输延时,测量误差小于1 ns,比传感器的TDOA测量精度高一个数量级,满足系统对光子链路传输延时的测量精度要求。展开更多
This paper illustrates the performance of a mobile positioning technique applicable to a GSM network.An experimental system of a network-based GSM positioning for ITS has been proposed, and the hybrid TOA-TDOA method ...This paper illustrates the performance of a mobile positioning technique applicable to a GSM network.An experimental system of a network-based GSM positioning for ITS has been proposed, and the hybrid TOA-TDOA method based on GSM signaling has been analyzed and used. The performance of the proposed system is showed through simulations in urban and suburban environments. The accuracy for 67% mobile stations is 70 m in urban and 120 m in suburban. The accuracy, coverage and network load of positioning system are also analyzed.展开更多
Aiming at the lower microseismic localization accuracy in underground shallow distributed burst point localization based on time difference of arriva(TDOA),this paper presents a method for microseismic localizati...Aiming at the lower microseismic localization accuracy in underground shallow distributed burst point localization based on time difference of arriva(TDOA),this paper presents a method for microseismic localization based on group waves’ time difference information Firstly, extract the time difference corresponding to direct P wavers dominant frequency by utilizing its propagation characteristics. Secondly, construct TDOA model with non-prediction velocity and identify objective function of particle swarm optimization (PSO). Afterwards, construct the initial particle swarm by using time difference information Finally, search the localization results in optimal solution space. The results of experimental verification show that the microseismic localization method proposed in this paper effectively enhances the localization accuracy of microseismic explosion source with positioning error less than 50 cm, which can satisfy the localization requirements of shallow burst point and has definite value for engineering application in underground space positioning field.展开更多
For the joint time difference of arrival(TDOA) and angle of arrival(AOA) location scene,two methods are proposed based on the rectangular coordinates and the polar coordinates,respectively.The problem is solved pe...For the joint time difference of arrival(TDOA) and angle of arrival(AOA) location scene,two methods are proposed based on the rectangular coordinates and the polar coordinates,respectively.The problem is solved perfectly by calculating the target position with the joint TDOA and AOA location.On the condition of rectangular coordinates,first of all,it figures out the radial range between target and reference stations,then calculates the location of the target.In the case of polar coordinates,first of all,it figures out the azimuth between target and reference stations,then figures out the radial range between target and reference stations,finally obtains the location of the target.Simultaneously,simulation analyses show that the theoretical analysis is correct,and the proposed methods also provide the application of the joint TDOA and AOA location algorithm with the theoretical basis.展开更多
By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating ...By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating the position and velocity of a moving source is proposed. By utilizing the Lagrange multipliers technique, the known relation between the intermediate variables and the source location coordinates could be exploited to constrain the solution. And without requiring apriori knowledge of TDOA and FDOA measurement noises, the proposed algorithm can satisfy the demand of practical applications. Additionally, on basis of con- volute and polynomial rooting operations, the Lagrange multipliers can be obtained efficiently and robustly allowing real-time imple- mentation and global convergence. Simulation results show that the proposed estimator achieves remarkably better performance than the two-step weighted least square (WLS) approach especially for higher measurement noise level.展开更多
The time difference of arrival(TDOA)estimation plays a crucial role in the accurate localization of the satellite interference source.In the dual-satellites interference source localization system,the target signal fr...The time difference of arrival(TDOA)estimation plays a crucial role in the accurate localization of the satellite interference source.In the dual-satellites interference source localization system,the target signal from the adjacent satellite is likely to be interfered by the normal communication signal with the same frequency.Therefore,the signal to noise ratio(SNR)of the target signal would become too low,and the TDOA estimation through cross-correlation processing would be unreliable or even unattainable.This paper proposes a technique based on blind separation to solve the co-channel interference problem,where separation of the mixed signal can be carried out by the particle filter(PF)algorithm.The experimental results show that the proposed method could achieve more accurate TDOA estimation.The measured data obtained by using the software radio platform at 915 MHz and 2 GHz respectively verify the effectiveness of the proposed method.展开更多
With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an effi...With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an efficient algorithm for estimating the position is proposed, which exploits the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method to solve nonlinear equations at the source location under the additive measurement error. Although the accuracy of two-step weighted-least-square (WLS) method based on TDOAs and GROAs is very high, this method has a high computational complexity. While the proposed approach can achieve the same accuracy and bias with the lower computational complexity when the signal-to-noise ratio (SNR) is high, especially it can achieve better accuracy and smaller bias at a lower SNR. The proposed algorithm can be applied to the actual environment due to its real-time property and good robust performance. Simulation results show that with a good initial guess to begin with, the proposed estimator converges to the true solution and achieves the Cramer-Rao lower bound (CRLB) accuracy for both near-field and far-field sources.展开更多
Based on the time differences of arrival(TDOA) and frequency differences of arrival(FDOA) measurements of the given planar stationary radiation source, the joint TDOA/FDOA location algorithm which solves the location ...Based on the time differences of arrival(TDOA) and frequency differences of arrival(FDOA) measurements of the given planar stationary radiation source, the joint TDOA/FDOA location algorithm which solves the location of the target directly is proposed. Compared with weighted least squares(WLS) methods,the proposed algorithm is also suitable for well-posed conditions,and gets rid of the dependence on the constraints of Earth's surface. First of all, the solution formulas are expressed by the radial range. Then substitute it into the equation of the radial range to figure out the radial range between the target and the reference station. Finally use the solution expression of the target location to estimate the location of the target accurately. The proposed algorithm solves the problem that WLS methods have a large positioning error when the number of observation stations is not over-determined. Simulation results show the effectiveness of the proposed algorithm, including effectively increasing the positioning accuracy and reducing the number of observatories.展开更多
To solve the problem of time difference of arrival(TDOA)positioning and tracking of targets by the unmanned aerial vehicles(UAV)swarm in future air combat,this paper adopts the TDOA positioning method and uses time di...To solve the problem of time difference of arrival(TDOA)positioning and tracking of targets by the unmanned aerial vehicles(UAV)swarm in future air combat,this paper adopts the TDOA positioning method and uses time difference sensors of the UAV swarm to locate target radiation sources.Firstly,a TDOA model for the target is set up for the UAV swarm under the condition that the error variance varies with the received signal-to-noise ratio.The accuracy of the positioning error is analyzed by geometric dilution of precision(GDOP).The D-optimality criterion of the positioning model is theoretically derived.The target is positioned and settled,and the maximum value of the Fisher information matrix determinant is used as the optimization objective function to optimize the track of the UAV in real time.Simulation results show that the track optimization improves the positioning accuracy and stability of the UAV swarm to the target.展开更多
文摘In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localization algorithm. The TDOA/FDOA (Frequency Difference of Arrival) localization algorithm is used to optimize the GDOP (geometric dilution of precision) of four-Satellite localization. The simulation results show that the absolute position measurement accuracy has little influence on TDOA/FDOA localization accuracy as compared with TDOA localization. Under the same conditions, TDOA/FDOA localization has better accuracy and its GDOP shows more uniform distribution in diamond configuration case. The localization accuracy of four-Satellite TDOA/FDOA is better than the localization accuracy of four-Satellite TDOA.
基金supported by the National Natural Science Foundation of China (61502522)Equipment Pre-Research Field Fund(JZX7Y20190253036101)+1 种基金Equipment Pre-Research Ministry of Education Joint Fund (6141A02033703)Hubei Provincial Natural Scie nce Foundation (2019CFC897)。
文摘The source location based on the hybrid time difference of arrival(TDOA)/frequency difference of arrival(FDOA) is a basic problem in wireless sensor networks, and the layout of sensors in the hybrid TDOA/FDOA positioning will greatly affect the accuracy of positioning. Using unmanned aerial vehicle(UAV) as base stations, by optimizing the trajectory of the UAV swarm, an optimal positioning configuration is formed to improve the accuracy of the target position and velocity estimation. In this paper, a hybrid TDOA/FDOA positioning model is first established, and the positioning accuracy of the hybrid TDOA/FDOA under different positioning configurations and different measurement errors is simulated by the geometric dilution of precision(GDOP) factor. Second, the Cramer-Rao lower bound(CRLB) matrix of hybrid TDOA/FDOA location under different moving states of the target is derived theoretically, the objective function of the track optimization is obtained, and the track of the UAV swarm is optimized in real time. The simulation results show that the track optimization effectively improves the accuracy of the target position and velocity estimation.
基金supported in part by National Key R&D Program of China under Grants 2020YFB1807602 and 2020YFB1807600National Science Foundation of China(61971217,61971218,61631020,61601167)+1 种基金the Fund of Sonar Technology Key Laboratory(Range estimation and location technology of passive target viamultiple array combination),Jiangsu Planned Projects for Postdoctoral Research Funds(2020Z013)China Postdoctoral Science Foundation(2020M681585).
文摘To improve the estimation accuracy,a novel time delay estimation(TDE)method based on the closed-form offset compensation is proposed.Firstly,we use the generalized cross-correlation with phase transform(GCC-PHAT)method to obtain the initial TDE.Secondly,a signal model using normalized cross spectrum is established,and the noise subspace is extracted by eigenvalue decomposition(EVD)of covariance matrix.Using the orthogonal relation between the steering vector and the noise subspace,the first-order Taylor expansion is carried out on the steering vector reconstructed by the initial TDE.Finally,the offsets are compensated via simple least squares(LS).Compared to other state-of-the-art methods,the proposed method significantly reduces the computational complexity and achieves better estimation performance.Experiments on both simulation and real-world data verify the efficiency of the proposed approach.
文摘Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on-site launching and generates real-time location data,enabling fire rescuers to arrive at the intended spot faster and correctly for effective and precise rescue.Auto-positioning with step-by-step instructions is proposed when launching the locating system,while no extra measuring instrument like Total Station(TS)is needed.Real-time location tracking is provided via a 3D space real-time locating system(RTLS)constructed using Ultra-wide Bandwidth technology(UWB),which requires electromagnetic waves to pass through concrete walls.A hybrid weighted least squares with a time difference of arrival(WLS/TDOA)positioning method is proposed to address real path-tracking issues in 3D space and to meet RTLS requirements for quick computing in real-world applications.The 3D WLS/TDOA algorithm is theoretically constructed with the Cramer-Rao lower bound(CRLB).The computing complexity is reduced to the lower bound for embedded hardware to directly compute the time differential of the arriving signals using the time-to-digital converter(TDC).The results of the experiments show that the errors are controlled when the positioning algorithm is applied in various complicated situations to fulfill the requirements of engineering applications.The statistical analysis of the data reveals that the proposed UWB RTLS auto-positioning system can track target tags with an accuracy of 0.20 m.
文摘针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并利用最小二乘算法对目标位置进行粗估计。其次,考虑测量误差和传感器位置误差,构建目标定位误差和传感器位置的联合方程,并利用加权最小二乘求解。最后,利用目标定位误差对目标位置粗估计值进行修正,得到更精确的定位结果。仿真实验表明,所提算法可对目标位置和传感器位置进行联合估计,相较于已有算法具有更高的定位精度,更适用于传感器位置存在误差情况下的水下目标定位。
基金Supported by the National Natural Science Foundation of China (No. 60825104,61072107)the National Postdoctor Fundation (No. 20090451251)+1 种基金the Shaanxi Industry Surmount Foundation (2009K08-31)the Fundamental Research Funds for the Central Universities(JY10000-902025) of China
文摘For Time Difference Of Arrival(TDOA) location based on multi-ground stations scene,two direct solution methods are proposed to solve the target position in TDOA location.Therein,the solving methods are realized in the rectangular and polar coordinates.On the condition of rectangular coordinates,first of all,it solves the radial range between the target and reference station,then cal-culates the location of the target.In the case of polar coordinates,the azimuth between the target and reference station is solved first,then the radial range between the target and reference station is figured out,finally the location of the target is obtained.Simultaneously,the simulation and comparison analysis are given in detail,and show that the polar solving method has the better fuzzy performance than that of rectangular coordinate.
文摘在TDOA(time difference of arrival)目标模拟系统中,采用微波光子链路传输包含精确TDOA信息的多路多频段目标模拟信号,为保证TDOA信息的精度足够高,需要精确测量目标模拟信号经过光子链路的传输延时。从特定工程应用角度提出一种光子链路传输延时测量方法,通过专用延时测量芯片实现传输延时高分辨率、高精度测量,通过延时测量信号和目标模拟信号分时占用单根光纤的相同光传输波道,实现光子链路传输延时测量和目标模拟信号传输分时工作,从机理上满足了精确测量光子链路传输延时所需硬件条件。试验结果:表明该方法可精确测量目标模拟信号经过光子链路的传输延时,测量误差小于1 ns,比传感器的TDOA测量精度高一个数量级,满足系统对光子链路传输延时的测量精度要求。
基金the auspices of the National“973”Key Project for base research on urban traffic monitoring and management system(G1998030408)
文摘This paper illustrates the performance of a mobile positioning technique applicable to a GSM network.An experimental system of a network-based GSM positioning for ITS has been proposed, and the hybrid TOA-TDOA method based on GSM signaling has been analyzed and used. The performance of the proposed system is showed through simulations in urban and suburban environments. The accuracy for 67% mobile stations is 70 m in urban and 120 m in suburban. The accuracy, coverage and network load of positioning system are also analyzed.
基金National Natural Science Foundation of China(No.61227003)National Program on Key Basic Research Program(973Program)(No.2013CB311804)
文摘Aiming at the lower microseismic localization accuracy in underground shallow distributed burst point localization based on time difference of arriva(TDOA),this paper presents a method for microseismic localization based on group waves’ time difference information Firstly, extract the time difference corresponding to direct P wavers dominant frequency by utilizing its propagation characteristics. Secondly, construct TDOA model with non-prediction velocity and identify objective function of particle swarm optimization (PSO). Afterwards, construct the initial particle swarm by using time difference information Finally, search the localization results in optimal solution space. The results of experimental verification show that the microseismic localization method proposed in this paper effectively enhances the localization accuracy of microseismic explosion source with positioning error less than 50 cm, which can satisfy the localization requirements of shallow burst point and has definite value for engineering application in underground space positioning field.
基金supported by the National Natural Science Foundation of China(6107210761271300)+4 种基金the Shaanxi Industry Surmount Foundation(2012K06-12)the Arm and Equipment Pre-research Foundationthe Fundamental Research Funds for the Central Universities of China(K0551302006K5051202045K50511020024)
文摘For the joint time difference of arrival(TDOA) and angle of arrival(AOA) location scene,two methods are proposed based on the rectangular coordinates and the polar coordinates,respectively.The problem is solved perfectly by calculating the target position with the joint TDOA and AOA location.On the condition of rectangular coordinates,first of all,it figures out the radial range between target and reference stations,then calculates the location of the target.In the case of polar coordinates,first of all,it figures out the azimuth between target and reference stations,then figures out the radial range between target and reference stations,finally obtains the location of the target.Simultaneously,simulation analyses show that the theoretical analysis is correct,and the proposed methods also provide the application of the joint TDOA and AOA location algorithm with the theoretical basis.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2010AA7010422 2011AA7014061)
文摘By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating the position and velocity of a moving source is proposed. By utilizing the Lagrange multipliers technique, the known relation between the intermediate variables and the source location coordinates could be exploited to constrain the solution. And without requiring apriori knowledge of TDOA and FDOA measurement noises, the proposed algorithm can satisfy the demand of practical applications. Additionally, on basis of con- volute and polynomial rooting operations, the Lagrange multipliers can be obtained efficiently and robustly allowing real-time imple- mentation and global convergence. Simulation results show that the proposed estimator achieves remarkably better performance than the two-step weighted least square (WLS) approach especially for higher measurement noise level.
基金supported by the Fundamental Research Funds for the Central Universities(2082604194194)
文摘The time difference of arrival(TDOA)estimation plays a crucial role in the accurate localization of the satellite interference source.In the dual-satellites interference source localization system,the target signal from the adjacent satellite is likely to be interfered by the normal communication signal with the same frequency.Therefore,the signal to noise ratio(SNR)of the target signal would become too low,and the TDOA estimation through cross-correlation processing would be unreliable or even unattainable.This paper proposes a technique based on blind separation to solve the co-channel interference problem,where separation of the mixed signal can be carried out by the particle filter(PF)algorithm.The experimental results show that the proposed method could achieve more accurate TDOA estimation.The measured data obtained by using the software radio platform at 915 MHz and 2 GHz respectively verify the effectiveness of the proposed method.
基金supported by the Major National Science&Technology Projects(2010ZX03006-002-04)the National Natural Science Foundation of China(61072070)+4 种基金the Doctorial Programs Foundation of the Ministry of Education(20110203110011)the"111 Project"(B08038)the Fundamental Research Funds of the Ministry of Education(72124338)the Key Programs for Natural Science Foundation of Shanxi Province(2012JZ8002)the Foundation of State Key Laboratory of Integrated Services Networks(ISN1101002)
文摘With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an efficient algorithm for estimating the position is proposed, which exploits the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method to solve nonlinear equations at the source location under the additive measurement error. Although the accuracy of two-step weighted-least-square (WLS) method based on TDOAs and GROAs is very high, this method has a high computational complexity. While the proposed approach can achieve the same accuracy and bias with the lower computational complexity when the signal-to-noise ratio (SNR) is high, especially it can achieve better accuracy and smaller bias at a lower SNR. The proposed algorithm can be applied to the actual environment due to its real-time property and good robust performance. Simulation results show that with a good initial guess to begin with, the proposed estimator converges to the true solution and achieves the Cramer-Rao lower bound (CRLB) accuracy for both near-field and far-field sources.
基金supported by the National Natural Science Foundation of China(6140236561271300)the 13th Five-Year Weaponry PreResearch Project。
文摘Based on the time differences of arrival(TDOA) and frequency differences of arrival(FDOA) measurements of the given planar stationary radiation source, the joint TDOA/FDOA location algorithm which solves the location of the target directly is proposed. Compared with weighted least squares(WLS) methods,the proposed algorithm is also suitable for well-posed conditions,and gets rid of the dependence on the constraints of Earth's surface. First of all, the solution formulas are expressed by the radial range. Then substitute it into the equation of the radial range to figure out the radial range between the target and the reference station. Finally use the solution expression of the target location to estimate the location of the target accurately. The proposed algorithm solves the problem that WLS methods have a large positioning error when the number of observation stations is not over-determined. Simulation results show the effectiveness of the proposed algorithm, including effectively increasing the positioning accuracy and reducing the number of observatories.
基金This work was supported by the National Natural Science Foundation of China(61502522)the Equipment Pre-Research Field Fund(JZX7Y20190253036101)+1 种基金the Equipment Pre-Research Ministry of Education Joint Fund(6141A02033703)the Hubei Provincial Natural Science Foundation(2019CFC897).
文摘To solve the problem of time difference of arrival(TDOA)positioning and tracking of targets by the unmanned aerial vehicles(UAV)swarm in future air combat,this paper adopts the TDOA positioning method and uses time difference sensors of the UAV swarm to locate target radiation sources.Firstly,a TDOA model for the target is set up for the UAV swarm under the condition that the error variance varies with the received signal-to-noise ratio.The accuracy of the positioning error is analyzed by geometric dilution of precision(GDOP).The D-optimality criterion of the positioning model is theoretically derived.The target is positioned and settled,and the maximum value of the Fisher information matrix determinant is used as the optimization objective function to optimize the track of the UAV in real time.Simulation results show that the track optimization improves the positioning accuracy and stability of the UAV swarm to the target.