在日固坐标系(地磁纬度和地方时)下,累积地方时过去24 h的COSMIC(Constellation Observing System for Meteorology Ionosphere and Climate)观测资料,通过对110~750 km高度范围内的电子密度进行数值积分得到各掩星点的垂直TEC值,进而...在日固坐标系(地磁纬度和地方时)下,累积地方时过去24 h的COSMIC(Constellation Observing System for Meteorology Ionosphere and Climate)观测资料,通过对110~750 km高度范围内的电子密度进行数值积分得到各掩星点的垂直TEC值,进而利用Kriging方法插值产生近实时的全球地方时MAGLat 2.5°×2 h的COSMIC TEC图.利用2008年1月1日至2010年6月30日共30个月的COSMIC数据,逐日构建COSMIC TEC图,将其与全球导航卫星系统服务组织(International GNSS Service,IGS)发布的全球电离层TEC图(Global Ionospheric Maps,GIMs)以及OSTM/JASON-2卫星高度计观测值分别进行比对,证明利用COSMIC掩星资料构建全球电离层垂直TEC图是可行的.展开更多
The processes leading to the growth and inhibition of equatorial anomaly before major earthquake (EQ) were viewed in this paper by examining global Total Electron Content (TEC) that contoured over longitude sectors co...The processes leading to the growth and inhibition of equatorial anomaly before major earthquake (EQ) were viewed in this paper by examining global Total Electron Content (TEC) that contoured over longitude sectors covering Africa to Pacific, in association with EQ events of Japan (M = 9) that occurred at 135°E to 145°E and 35°N to 40°N, on March 9 and 11, 2011 and of Indonesia (M = 8.6) that took place at 2.311°N, 93°E, in April 11, 2012. The paper focuses on the development of abnormal increase in density in the night sector around—10° latitude zone prior to the two major EQ events, though their epicenters are separated widely from the anomaly region. The F-layer density variations from relevant locations and TEC features obtained from GPS at Appleton anomaly crest station are utilized as supporting inputs. The possible sources leading to the anomalous development in density are discussed in the frame of EQ time consequences of lithospheric-atmospheric processes between the equator and beyond. The role of electric field generated by pre EQ preparatory activities and dynamical coupling modes through seismic fault line are brought in to the ambit of discussion.展开更多
A neural network model of the Global Navigation Satellite System - vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that has been utilized in this work is the consideration of th...A neural network model of the Global Navigation Satellite System - vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that has been utilized in this work is the consideration of the International Reference Ionosphere's (IRI's) critical plasma frequency (foF2) parameter as an additional neuron for the network's input layer. The work also explores the effects of using various other input layer neurons like distur- bance storm time (DST) and sunspot number. All available GNSS data from the Nigerian Permanent GNSS Network (NIGNET) were used, and these cover the period from 2011 to 2015, for 14 stations. Asides increasing the learning accuracy of the networks, the inclusion of the IRI's foF2 parameter as an input neuron is ideal for making the networks to learn long-term solar cycle variations. This is important especially for regions, like in this work, where the GNSS data is available for less than the period of a solar cycle. The neural network model developed in this work has been tested for time-varying and spatial per- formances. The latest 10% of the GNSS observations from each of the stations were used to test the forecasting ability of the networks, while data from 2 of the stations were entirely used for spatial performance testing. The results show that root-mean-squared-errors were generally less than 8.5 TEC units for all modes of testing performed using the optimal network. When compared to other models, the model developed in this work was observed to reduce the prediction errors to about half those of the NeQuick and the IRI model.展开更多
为了提高中国区域电离层垂直总电子含量(vertical total electron content,VTEC)建模的精度,减少区域建模边缘误差,利用中国地壳运动观测网络(Crustal Movement Observation Network of China,CMONOC)和国际GNSS服务组织(International ...为了提高中国区域电离层垂直总电子含量(vertical total electron content,VTEC)建模的精度,减少区域建模边缘误差,利用中国地壳运动观测网络(Crustal Movement Observation Network of China,CMONOC)和国际GNSS服务组织(International GNSS Service,IGS)GPS数据联合进行电离层建模,并对中国区域电离层建模策略进行定量考察,对比给出各类建模策略对中国区域电离层建模精度的影响,从而给出更符合中国区域的电离层建模方式。将建模后的结果同IGS中心的全球电离层格网产品进行比对,结果显示:基于本文方法对中国区域电离层建模的结果精度更高,与IGS数据中心发布的电离层格网产品相比误差平均值为1.2109 TECU,与卫星实测电离层TEC的内符合精度误差为1.050 TECU。说明利用联合数据建模能一定程度上提高中国区域建模的精度,同时减少区域建模边缘的误差。展开更多
Possible ionospheric disturbances relating to the May 12, 2008, MsS.0 Wenchuan earthquake were identified by Global Positioning System (GPS)-derived total electron content (TEC), ion- osonde observations, the glob...Possible ionospheric disturbances relating to the May 12, 2008, MsS.0 Wenchuan earthquake were identified by Global Positioning System (GPS)-derived total electron content (TEC), ion- osonde observations, the global ionospheric map (GIM), and electron density profiles detected by the Constellation Observation System for Meteorology Ionosphere and Climate (COSMIC). We applied a statistical test to detect anomalous TEC signals and found that a unique enhancement in TEC, recorded at 16 GPS stations, appeared on May 9, 2008. The critical fre- quency at F2 peak (foF2), observed by the Chinese ionosondes, and maximal plasma frequency, derived from COSMIC data, revealed a characteristic similar to GPS TEC variations. The GIM showed that the anomalous variations of May 9 were located southeast of the epicenter. Using GPS data from 13 stations near the epicenter, we analyzed the TEC variations of satellite orbit traces during 04:00-11:00 UT. We found that TEC decreased to the east and increased to the southeast of the epicenter during this period. Results showed that the abnormal disturbance on May 9 was probably an ionosphenc precursor of the Wenchuan earthquake of May 12, 2008.展开更多
Ionosphere is an important layer of atmosphere which is under constant forcing from both below due to gravitational, geomagnetic and seismic activities, and above due to solar wind and galactic radiation. Spatio-tempo...Ionosphere is an important layer of atmosphere which is under constant forcing from both below due to gravitational, geomagnetic and seismic activities, and above due to solar wind and galactic radiation. Spatio-temporal variability of ionosphere is made up of two major components that can be listed as spatio-temporal trends and secondary variabilities that are due to disturbances in the geomagnetic field, gravitational waves and coupling of seismic activities into the upper atmosphere and ionosphere. Some of these second order variabilities generate wave-like oscillations in the ionosphere which propagate at a certain frequency, duration and velocity. These oscillations cause major problems for navigation and guidance systems that utilize GNSS (Global Navigation Satellite Systems). In this study, the frequency and duration of wave-like oscillations are determined using a DFT (Discrete Fourier Transform) based algo- rithm over the STEC (slant total electron content) values estimated from single GPS (Global Positioning System) station. The performance of the developed method, namely IONOLAB-FFT, is first determined using synthetic oscillations with known frequencies and durations. Then, IONOLAB-FFr is applied to STEC data from various midlatitude GPS stations for detection of frequency and duration of both medium and large scale TIDs (traveling ionospheric disturbances). It is observed that IONOLAB-FFr can estimate TIDs with more than 80% accuracy for the following cases: frequencies from 0.6 mHz to 2.4 mHz and durations longer than 10 min; frequencies from 0.15 mHz to 0.6 mHz and durations longer than 50 min; fre- quencies higher than 0.29 mHz and durations longer than 50 rain.展开更多
文摘The processes leading to the growth and inhibition of equatorial anomaly before major earthquake (EQ) were viewed in this paper by examining global Total Electron Content (TEC) that contoured over longitude sectors covering Africa to Pacific, in association with EQ events of Japan (M = 9) that occurred at 135°E to 145°E and 35°N to 40°N, on March 9 and 11, 2011 and of Indonesia (M = 8.6) that took place at 2.311°N, 93°E, in April 11, 2012. The paper focuses on the development of abnormal increase in density in the night sector around—10° latitude zone prior to the two major EQ events, though their epicenters are separated widely from the anomaly region. The F-layer density variations from relevant locations and TEC features obtained from GPS at Appleton anomaly crest station are utilized as supporting inputs. The possible sources leading to the anomalous development in density are discussed in the frame of EQ time consequences of lithospheric-atmospheric processes between the equator and beyond. The role of electric field generated by pre EQ preparatory activities and dynamical coupling modes through seismic fault line are brought in to the ambit of discussion.
文摘A neural network model of the Global Navigation Satellite System - vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that has been utilized in this work is the consideration of the International Reference Ionosphere's (IRI's) critical plasma frequency (foF2) parameter as an additional neuron for the network's input layer. The work also explores the effects of using various other input layer neurons like distur- bance storm time (DST) and sunspot number. All available GNSS data from the Nigerian Permanent GNSS Network (NIGNET) were used, and these cover the period from 2011 to 2015, for 14 stations. Asides increasing the learning accuracy of the networks, the inclusion of the IRI's foF2 parameter as an input neuron is ideal for making the networks to learn long-term solar cycle variations. This is important especially for regions, like in this work, where the GNSS data is available for less than the period of a solar cycle. The neural network model developed in this work has been tested for time-varying and spatial per- formances. The latest 10% of the GNSS observations from each of the stations were used to test the forecasting ability of the networks, while data from 2 of the stations were entirely used for spatial performance testing. The results show that root-mean-squared-errors were generally less than 8.5 TEC units for all modes of testing performed using the optimal network. When compared to other models, the model developed in this work was observed to reduce the prediction errors to about half those of the NeQuick and the IRI model.
文摘为了提高中国区域电离层垂直总电子含量(vertical total electron content,VTEC)建模的精度,减少区域建模边缘误差,利用中国地壳运动观测网络(Crustal Movement Observation Network of China,CMONOC)和国际GNSS服务组织(International GNSS Service,IGS)GPS数据联合进行电离层建模,并对中国区域电离层建模策略进行定量考察,对比给出各类建模策略对中国区域电离层建模精度的影响,从而给出更符合中国区域的电离层建模方式。将建模后的结果同IGS中心的全球电离层格网产品进行比对,结果显示:基于本文方法对中国区域电离层建模的结果精度更高,与IGS数据中心发布的电离层格网产品相比误差平均值为1.2109 TECU,与卫星实测电离层TEC的内符合精度误差为1.050 TECU。说明利用联合数据建模能一定程度上提高中国区域建模的精度,同时减少区域建模边缘的误差。
基金supported financially by Science for Earthquake Resilience(XH14064Y)the open foundation of the State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2014-5-2-E)
文摘Possible ionospheric disturbances relating to the May 12, 2008, MsS.0 Wenchuan earthquake were identified by Global Positioning System (GPS)-derived total electron content (TEC), ion- osonde observations, the global ionospheric map (GIM), and electron density profiles detected by the Constellation Observation System for Meteorology Ionosphere and Climate (COSMIC). We applied a statistical test to detect anomalous TEC signals and found that a unique enhancement in TEC, recorded at 16 GPS stations, appeared on May 9, 2008. The critical fre- quency at F2 peak (foF2), observed by the Chinese ionosondes, and maximal plasma frequency, derived from COSMIC data, revealed a characteristic similar to GPS TEC variations. The GIM showed that the anomalous variations of May 9 were located southeast of the epicenter. Using GPS data from 13 stations near the epicenter, we analyzed the TEC variations of satellite orbit traces during 04:00-11:00 UT. We found that TEC decreased to the east and increased to the southeast of the epicenter during this period. Results showed that the abnormal disturbance on May 9 was probably an ionosphenc precursor of the Wenchuan earthquake of May 12, 2008.
文摘Ionosphere is an important layer of atmosphere which is under constant forcing from both below due to gravitational, geomagnetic and seismic activities, and above due to solar wind and galactic radiation. Spatio-temporal variability of ionosphere is made up of two major components that can be listed as spatio-temporal trends and secondary variabilities that are due to disturbances in the geomagnetic field, gravitational waves and coupling of seismic activities into the upper atmosphere and ionosphere. Some of these second order variabilities generate wave-like oscillations in the ionosphere which propagate at a certain frequency, duration and velocity. These oscillations cause major problems for navigation and guidance systems that utilize GNSS (Global Navigation Satellite Systems). In this study, the frequency and duration of wave-like oscillations are determined using a DFT (Discrete Fourier Transform) based algo- rithm over the STEC (slant total electron content) values estimated from single GPS (Global Positioning System) station. The performance of the developed method, namely IONOLAB-FFT, is first determined using synthetic oscillations with known frequencies and durations. Then, IONOLAB-FFr is applied to STEC data from various midlatitude GPS stations for detection of frequency and duration of both medium and large scale TIDs (traveling ionospheric disturbances). It is observed that IONOLAB-FFr can estimate TIDs with more than 80% accuracy for the following cases: frequencies from 0.6 mHz to 2.4 mHz and durations longer than 10 min; frequencies from 0.15 mHz to 0.6 mHz and durations longer than 50 min; fre- quencies higher than 0.29 mHz and durations longer than 50 rain.